Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
J Am Chem Soc. 2011 Jan 19;133(2):239-51. doi: 10.1021/ja104433n. Epub 2010 Dec 16.
Herein we report how de novo designed peptides can be used to investigate whether the position of a metal site along a linear sequence that folds into a three-stranded α-helical coiled coil defines the physical properties of Cd(II) ions in either CdS(3) or CdS(3)O (O-being an exogenous water molecule) coordination environments. Peptides are presented that bind Cd(II) into two identical coordination sites that are located at different topological positions at the interior of these constructs. The peptide GRANDL16PenL19IL23PenL26I binds two Cd(II) as trigonal planar 3-coordinate CdS(3) structures whereas GRANDL12AL16CL26AL30C sequesters two Cd(II) as pseudotetrahedral 4-coordinate CdS(3)O structures. We demonstrate how for the first peptide, having a more rigid structure, the location of the identical binding sites along the linear sequence does not affect the physical properties of the two bound Cd(II). However, the sites are not completely independent as Cd(II) bound to one of the sites ((113)Cd NMR chemical shift of 681 ppm) is perturbed by the metalation state (apo or Cd(pep)(Hpep)(2) or Cd(pep)(3)) of the second center ((113)Cd NMR chemical shift of 686 ppm). GRANDL12AL16CL26AL30C shows a completely different behavior. The physical properties of the two bound Cd(II) ions indeed depend on the position of the metal center, having pK(a2) values for the equilibrium Cd(pep)(Hpep)(2) → Cd(pep)(3) + 2H(+) (corresponding to deprotonation and coordination of cysteine thiols) that range from 9.9 to 13.9. In addition, the L26AL30C site shows dynamic behavior, which is not observed for the L12AL16C site. These results indicate that for these systems one cannot simply assign a "4-coordinate structure" and assume certain physical properties for that site since important factors such as packing of the adjacent Leu, size of the intended cavity (endo vs exo) and location of the metal site play crucial roles in determining the final properties of the bound Cd(II).
在此,我们报告了从头设计的肽如何用于研究沿线性序列折叠成三股α-螺旋卷曲螺旋的金属位置是否决定 Cd(II) 离子在 CdS(3) 或 CdS(3)O(O 是外源性水分子)配位环境中的物理性质。提出了一些肽,它们将 Cd(II) 结合到两个位于这些构建体内部不同拓扑位置的相同配位位点。肽 GRANDL16PenL19IL23PenL26I 将两个 Cd(II) 结合为三角平面 3 配位 CdS(3) 结构,而 GRANDL12AL16CL26AL30C 将两个 Cd(II) 螯合为伪四面体 4 配位 CdS(3)O 结构。我们证明了对于第一个肽,由于其结构更刚性,线性序列中相同结合位点的位置不会影响两个结合的 Cd(II) 的物理性质。然而,这些位点并不是完全独立的,因为与第二个中心的金属化状态(apo 或 Cd(pep)(Hpep)(2) 或 Cd(pep)(3))有关的一个位点结合的 Cd(II)((113)Cd NMR 化学位移为 681 ppm)受到第二个中心的金属化状态(apo 或 Cd(pep)(Hpep)(2) 或 Cd(pep)(3))的影响((113)Cd NMR 化学位移为 686 ppm)。GRANDL12AL16CL26AL30C 表现出完全不同的行为。两个结合的 Cd(II) 离子的物理性质确实取决于金属中心的位置,其平衡 Cd(pep)(Hpep)(2) → Cd(pep)(3) + 2H(+)(对应于半胱氨酸硫醇的去质子化和配位)的 pK(a2) 值范围为 9.9 至 13.9。此外,L26AL30C 位点表现出动态行为,而 L12AL16C 位点则没有观察到这种行为。这些结果表明,对于这些系统,不能简单地分配“4 配位结构”并假设该位点具有某些物理性质,因为诸如相邻亮氨酸的包装、预期腔的大小(内或外)和金属位置的位置等重要因素在确定结合的 Cd(II) 的最终性质方面起着至关重要的作用。