Peacock Anna F A, Hemmingsen Lars, Pecoraro Vincent L
Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16566-71. doi: 10.1073/pnas.0806792105. Epub 2008 Oct 21.
Here, we report a previously undescribed approach for controlling metal ion coordination geometry in biomolecules by reorientating amino acid side chains through substitution of L- to D-amino acids. These diastereopeptides allow us to manipulate the spatial orientation of amino acid side chains to alter the sterics of metal binding pockets. We have used this approach to design the de novo metallopeptide, Cd(TRIL12L(D)L16C)(3)(-), which is an example of Cd(II) bound to 3 L-Cys as exclusively trigonal CdS(3), as characterized by a combination of (113)Cd NMR and (111m)Cd PAC spectroscopy. We subsequently show that the physical properties of such a site, such as the high pK(a2) for Cd(II) binding of 15.1, is due to the nature of the coordination number and not the ligating group. Further more this approach allowed for the design of a construct, GRANDL12L(D)L16CL26AL30C, capable of independently binding 2 equivalents of Cd(II) to 2 very similar Cys sites as exclusively 3- and 4-, CdS(3) and CdS(3)O, respectively. Demonstrating that we are capable of controlling the Cd(II) coordination number in these 2 sites solely by varying the nature of a noncoordinating second coordination sphere amino acid, with D-leucine and L-alanine resulting in exclusively 3- and 4-coordinate structures, respectively. Cd(II) was found to selectively bind to the 4-coordinate CdS(3)O site, demonstrating that a protein can be designed that displays metal-binding selectivity based solely on coordination number control and not on the chemical identity of coordinating ligands.
在此,我们报道了一种此前未被描述的方法,即通过将L-氨基酸替换为D-氨基酸来重新定向氨基酸侧链,从而控制生物分子中的金属离子配位几何结构。这些非对映体肽使我们能够操纵氨基酸侧链的空间取向,以改变金属结合口袋的空间结构。我们已使用这种方法设计了从头合成的金属肽Cd(TRIL12L(D)L16C)(3)(-),它是Cd(II)与3个L-半胱氨酸结合形成的纯三角CdS(3)的例子,通过(113)Cd NMR和(111m)Cd PAC光谱学的组合进行表征。我们随后表明,这样一个位点的物理性质,如Cd(II)结合的高pK(a2)为15.1,是由于配位数的性质而非配位基团。此外,这种方法还允许设计一种构建体GRANDL12L(D)L16CL26AL30C,它能够分别独立地将2当量的Cd(II)结合到2个非常相似的半胱氨酸位点上,分别形成纯3-和4-配位结构,即CdS(3)和CdS(3)O。这表明我们能够仅通过改变非配位第二配位层氨基酸的性质来控制这两个位点中的Cd(II)配位数,D-亮氨酸和L-丙氨酸分别导致纯3-和4-配位结构。发现Cd(II)选择性地结合到4-配位的CdS(3)O位点,这表明可以设计一种蛋白质,其仅基于配位数控制而非配位配体的化学特性来显示金属结合选择性。