Université de Lille, Unité de Catalyse et Chimie du Solide - UMR CNRS, ENSCL, Villeneuve d'Ascq, France.
ACS Chem Biol. 2011 Mar 18;6(3):275-87. doi: 10.1021/cb100322v. Epub 2011 Jan 7.
Inhibition of hemozoin biocrystallization is considered the main mechanism of action of 4-aminoquinoline antimalarials including chloroquine (CQ) but cannot fully explain the activity of ferroquine (FQ) which has been related to redox properties and intramolecular hydrogen bonding. Analogues of FQ, methylferroquine (Me-FQ), ruthenoquine (RQ), and methylruthenoquine (Me-RQ), were prepared. Combination of physicochemical and molecular modeling methods showed that FQ and RQ favor intramolecular hydrogen bonding between the 4-aminoquinoline NH group and the terminal amino group in the absence of water, suggesting that this structure may enhance its passage through the membrane. This was further supported by the use of Me-FQ and Me-RQ where the intramolecular hydrogen bond cannot be formed. Docking studies suggest that FQ can interact specifically with the {0,0,1} and {1,0,0} faces of hemozoin, blocking crystal growth. With respect to the structure-activity relationship, the antimalarial activity on 15 different P. falciparum strains showed that the activity of FQ and RQ were correlated with each other but not with CQ, confirming lack of cross resistance. Conversely, Me-FQ and Me-RQ showed significant cross-resistance with CQ. Mutations or copy number of pfcrt, pfmrp, pfmdr1, pfmdr2, or pfnhe-1 did not exhibit significant correlations with the IC(50) of FQ or RQ. We next showed that FQ and Me-FQ were able to generate hydroxyl radicals, whereas RQ and me-RQ did not. Ultrastructural studies revealed that FQ and Me-FQ but not RQ or Me-RQ break down the parasite digestive vacuole membrane, which could be related to the ability of the former to generate hydroxyl radicals.
血红素生物结晶抑制被认为是包括氯喹(CQ)在内的 4-氨基喹啉类抗疟药的主要作用机制,但不能完全解释铁喹啉(FQ)的活性,铁喹啉的活性与氧化还原性质和分子内氢键有关。制备了 FQ 的类似物,如甲铁喹啉(Me-FQ)、钌喹啉(RQ)和甲钌喹啉(Me-RQ)。物理化学和分子模拟方法的结合表明,FQ 和 RQ 有利于在没有水的情况下,4-氨基喹啉 NH 基团和末端氨基之间的分子内氢键,这表明这种结构可能增强其穿过膜的能力。这进一步得到了 Me-FQ 和 Me-RQ 的使用的支持,在这些化合物中,分子内氢键不能形成。对接研究表明,FQ 可以与血红素的{0,0,1}和{1,0,0}面特异性相互作用,阻止晶体生长。关于构效关系,对 15 种不同的 P. falciparum 株的抗疟活性表明,FQ 和 RQ 的活性彼此相关,但与 CQ 不相关,证实缺乏交叉耐药性。相反,Me-FQ 和 Me-RQ 与 CQ 表现出显著的交叉耐药性。pfcrt、pfmrp、pfmdr1、pfmdr2 或 pfnhe-1 的突变或拷贝数与 FQ 或 RQ 的 IC50 没有显著相关性。我们接下来表明,FQ 和 Me-FQ 能够产生羟基自由基,而 RQ 和 Me-RQ 则不能。超微结构研究表明,FQ 和 Me-FQ 但不是 RQ 或 Me-RQ 破坏寄生虫的消化泡膜,这可能与前者产生羟基自由基的能力有关。