Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
Neural Comput. 2011 Mar;23(3):674-734. doi: 10.1162/NECO_a_00088. Epub 2010 Dec 16.
In stochastic models of synaptic plasticity based on a random walk, the control of fluctuations is imperative. We have argued that synapses could act as low-pass filters, filtering plasticity induction steps before expressing a step change in synaptic strength. Earlier work showed, in simulation, that such a synaptic filter tames fluctuations very well, leading to patterns of synaptic connectivity that are stable for long periods of time. Here, we approach this problem analytically. We explicitly calculate the lifetime of meta-stable states of synaptic connectivity using a Fokker-Planck formalism in order to understand the dependence of this lifetime on both the plasticity step size and the filtering mechanism. We find that our analytical results agree very well with simulation results, despite having to make two approximations. Our analysis reveals, however, a deeper significance to the filtering mechanism and the plasticity step size. We show that a filter scales the step size into a smaller, effective step size. This scaling suggests that the step size may itself play the role of a temperature parameter, so that a filter cools the dynamics, thereby reducing the influence of fluctuations. Using the master equation, we explicitly demonstrate a bifurcation at a critical step size, confirming this interpretation. At this critical point, spontaneous symmetry breaking occurs in the class of stochastic models of synaptic plasticity that we consider.
在基于随机漫步的突触可塑性随机模型中,控制波动是至关重要的。我们认为,突触可以作为低通滤波器,在突触强度发生阶跃变化之前,过滤可塑性诱导步骤。早期的工作在模拟中表明,这种突触滤波器可以很好地控制波动,导致突触连接模式在很长一段时间内保持稳定。在这里,我们从分析的角度来研究这个问题。我们使用福克-普朗克形式主义来明确计算突触连接的亚稳态寿命,以便了解这个寿命对可塑性阶跃大小和过滤机制的依赖性。我们发现,尽管我们不得不进行两个近似,我们的分析结果与模拟结果非常吻合。然而,我们的分析揭示了过滤机制和可塑性阶跃大小更深层次的意义。我们表明,滤波器将阶跃大小缩小为一个较小的有效阶跃大小。这种缩放表明,阶跃大小本身可能起着温度参数的作用,因此滤波器可以冷却动力学,从而减少波动的影响。我们使用主方程,在一个临界阶跃大小处明确地展示了一个分岔,证实了这种解释。在我们所考虑的突触可塑性随机模型的一类中,在这个临界点处发生了自发对称性破缺。