Suppr超能文献

抗波动稳定性:突触可塑性随机模型中尺度变换、分岔和自发对称性破缺的二维研究

Stability against fluctuations: a two-dimensional study of scaling, bifurcations and spontaneous symmetry breaking in stochastic models of synaptic plasticity.

作者信息

Elliott Terry

机构信息

Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.

出版信息

Biol Cybern. 2024 Apr;118(1-2):39-81. doi: 10.1007/s00422-024-00985-0. Epub 2024 Apr 7.

Abstract

Stochastic models of synaptic plasticity must confront the corrosive influence of fluctuations in synaptic strength on patterns of synaptic connectivity. To solve this problem, we have proposed that synapses act as filters, integrating plasticity induction signals and expressing changes in synaptic strength only upon reaching filter threshold. Our earlier analytical study calculated the lifetimes of quasi-stable patterns of synaptic connectivity with synaptic filtering. We showed that the plasticity step size in a stochastic model of spike-timing-dependent plasticity (STDP) acts as a temperature-like parameter, exhibiting a critical value below which neuronal structure formation occurs. The filter threshold scales this temperature-like parameter downwards, cooling the dynamics and enhancing stability. A key step in this calculation was a resetting approximation, essentially reducing the dynamics to one-dimensional processes. Here, we revisit our earlier study to examine this resetting approximation, with the aim of understanding in detail why it works so well by comparing it, and a simpler approximation, to the system's full dynamics consisting of various embedded two-dimensional processes without resetting. Comparing the full system to the simpler approximation, to our original resetting approximation, and to a one-afferent system, we show that their equilibrium distributions of synaptic strengths and critical plasticity step sizes are all qualitatively similar, and increasingly quantitatively similar as the filter threshold increases. This increasing similarity is due to the decorrelation in changes in synaptic strength between different afferents caused by our STDP model, and the amplification of this decorrelation with larger synaptic filters.

摘要

突触可塑性的随机模型必须应对突触强度波动对突触连接模式的侵蚀性影响。为了解决这个问题,我们提出突触起到滤波器的作用,整合可塑性诱导信号,并且仅在达到滤波器阈值时才表达突触强度的变化。我们早期的分析研究计算了具有突触滤波的突触连接准稳定模式的寿命。我们表明,在依赖于尖峰时间的可塑性(STDP)的随机模型中,可塑性步长起着类似温度的参数的作用,呈现出一个临界值,低于该临界值时神经元结构形成就会发生。滤波器阈值向下缩放这个类似温度的参数,冷却动力学并增强稳定性。此计算中的一个关键步骤是重置近似,本质上是将动力学简化为一维过程。在这里,我们重新审视我们早期的研究以检验这个重置近似,目的是通过将其与一个更简单的近似以及由各种无重置的嵌入式二维过程组成的系统的完整动力学进行比较,详细理解它为何能如此有效。将完整系统与更简单的近似、我们原来的重置近似以及单传入系统进行比较,我们表明它们的突触强度平衡分布和临界可塑性步长在定性上都相似,并且随着滤波器阈值的增加在定量上越来越相似。这种越来越高的相似性是由于我们的STDP模型导致不同传入之间突触强度变化的去相关,以及更大的突触滤波器对这种去相关的放大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ccc2/11602831/1df495899ead/422_2024_985_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验