Suppr超能文献

通过将复杂突触简化为简单突触来实现平均首次通过记忆寿命。

Mean First Passage Memory Lifetimes by Reducing Complex Synapses to Simple Synapses.

作者信息

Elliott Terry

机构信息

Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.

出版信息

Neural Comput. 2017 Jun;29(6):1468-1527. doi: 10.1162/NECO_a_00956. Epub 2017 Mar 23.

Abstract

Memory models that store new memories by forgetting old ones have memory lifetimes that are rather short and grow only logarithmically in the number of synapses. Attempts to overcome these deficits include "complex" models of synaptic plasticity in which synapses possess internal states governing the expression of synaptic plasticity. Integrate-and-express, filter-based models of synaptic plasticity propose that synapses act as low-pass filters, integrating plasticity induction signals before expressing synaptic plasticity. Such mechanisms enhance memory lifetimes, leading to an initial rise in the memory signal that is in radical contrast to other related, but nonintegrative, memory models. Because of the complexity of models with internal synaptic states, however, their dynamics can be more difficult to extract compared to "simple" models that lack internal states. Here, we show that by focusing only on processes that lead to changes in synaptic strength, we can integrate out internal synaptic states and effectively reduce complex synapses to simple synapses. For binary-strength synapses, these simplified dynamics then allow us to work directly in the transitions in perceptron activation induced by memory storage rather than in the underlying transitions in synaptic configurations. This permits us to write down master and Fokker-Planck equations that may be simplified under certain, well-defined approximations. These methods allow us to see that memory based on synaptic filters can be viewed as an initial transient that leads to memory signal rise, followed by the emergence of Ornstein-Uhlenbeck-like dynamics that return the system to equilibrium. We may use this approach to compute mean first passage time-defined memory lifetimes for complex models of memory storage.

摘要

通过遗忘旧记忆来存储新记忆的记忆模型,其记忆寿命相当短,且仅随突触数量呈对数增长。克服这些缺陷的尝试包括突触可塑性的“复杂”模型,其中突触具有控制突触可塑性表达的内部状态。基于积分与表达、滤波的突触可塑性模型提出,突触起着低通滤波器的作用,在表达突触可塑性之前对可塑性诱导信号进行积分。这种机制延长了记忆寿命,导致记忆信号最初上升,这与其他相关但非积分的记忆模型形成了鲜明对比。然而,由于具有内部突触状态的模型较为复杂,与缺乏内部状态的“简单”模型相比,其动力学更难提取。在这里,我们表明,通过仅关注导致突触强度变化的过程,我们可以消除内部突触状态,并有效地将复杂突触简化为简单突触。对于二元强度突触,这些简化的动力学使我们能够直接研究记忆存储引起的感知器激活的转变,而不是突触配置的潜在转变。这使我们能够写出在某些明确的近似条件下可以简化的主方程和福克 - 普朗克方程。这些方法让我们看到,基于突触滤波器的记忆可以被视为导致记忆信号上升的初始瞬态,随后出现类似奥恩斯坦 - 乌伦贝克的动力学,使系统恢复平衡。我们可以使用这种方法来计算复杂记忆存储模型的平均首次通过时间定义的记忆寿命。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验