Fischer Asja, Igel Christian
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Neural Comput. 2011 Mar;23(3):664-73. doi: 10.1162/NECO_a_00085. Epub 2010 Dec 16.
Optimization based on k-step contrastive divergence (CD) has become a common way to train restricted Boltzmann machines (RBMs). The k-step CD is a biased estimator of the log-likelihood gradient relying on Gibbs sampling. We derive a new upper bound for this bias. Its magnitude depends on k, the number of variables in the RBM, and the maximum change in energy that can be produced by changing a single variable. The last reflects the dependence on the absolute values of the RBM parameters. The magnitude of the bias is also affected by the distance in variation between the modeled distribution and the starting distribution of the Gibbs chain.
基于k步对比散度(CD)的优化已成为训练受限玻尔兹曼机(RBM)的常用方法。k步CD是依赖吉布斯采样的对数似然梯度的有偏估计量。我们推导出了这种偏差的一个新的上界。其大小取决于k、RBM中的变量数量以及改变单个变量所能产生的能量最大变化。后者反映了对RBM参数绝对值的依赖性。偏差的大小还受到吉布斯链的建模分布与起始分布之间的变化距离的影响。