Suppr超能文献

通过迭代条件最大似然估计加速受限玻尔兹曼机的训练

Accelerate Training of Restricted Boltzmann Machines via Iterative Conditional Maximum Likelihood Estimation.

作者信息

Wu Mingqi, Luo Ye, Liang Faming

机构信息

Shell, 150 N Dairy Ashford Rd Houston, Texas 77079, USA.

Faculty of Business and Economics University of Hong Kong Hong Kong, China.

出版信息

Stat Interface. 2019;12(3):377-385. doi: 10.4310/18-sii552. Epub 2019 Jun 4.

Abstract

Restricted Boltzmann machines (RBMs) have become a popular tool of feature coding or extraction for unsupervised learning in recent years. However, there still lacks an efficient algorithm for training the RBM due to that its likelihood function contains an intractable normalizing constant. The existing algorithms, such as contrastive divergence and its variants, approximate the gradient of the likelihood function using Markov chain Monte Carlo. However, the approximation is time consuming and, moreover, the approximation error often impedes the convergence of the training algorithm. This paper proposes a fast algorithm for training RBMs by treating the hidden states as missing data and then estimating the parameters of the RBM via an iterative conditional maximum likelihood estimation approach, which avoids the issue of intractable normalizing constants. The numerical results indicate that the proposed algorithm can provide a drastic improvement over the contrastive divergence algorithm in RBM training. This paper also presents an extension of the proposed algorithm for how to cope with missing data in RBM training and illustrates its application using an example about drug-target interaction prediction.

摘要

受限玻尔兹曼机(RBMs)近年来已成为无监督学习中特征编码或提取的常用工具。然而,由于其似然函数包含一个难以处理的归一化常数,目前仍缺乏一种有效的训练RBM的算法。现有的算法,如对比散度及其变体,使用马尔可夫链蒙特卡罗方法近似似然函数的梯度。然而,这种近似非常耗时,而且近似误差常常阻碍训练算法的收敛。本文提出了一种通过将隐藏状态视为缺失数据,然后通过迭代条件最大似然估计方法估计RBM参数来训练RBM的快速算法,该方法避免了难以处理的归一化常数问题。数值结果表明,所提出的算法在RBM训练中比对比散度算法有显著改进。本文还给出了所提出算法在RBM训练中如何处理缺失数据的扩展,并通过一个药物-靶点相互作用预测的例子说明了其应用。

相似文献

3
Learning Gaussian-Bernoulli RBMs Using Difference of Convex Functions Optimization.使用凸函数差优化学习高斯-伯努利受限玻尔兹曼机
IEEE Trans Neural Netw Learn Syst. 2022 Oct;33(10):5728-5738. doi: 10.1109/TNNLS.2021.3071358. Epub 2022 Oct 5.
5
Expected energy-based restricted Boltzmann machine for classification.预期基于能量的受限玻尔兹曼机分类。
Neural Netw. 2015 Apr;64:29-38. doi: 10.1016/j.neunet.2014.09.006. Epub 2014 Sep 28.
6
Bounding the bias of contrastive divergence learning.界定对比散度学习的偏差。
Neural Comput. 2011 Mar;23(3):664-73. doi: 10.1162/NECO_a_00085. Epub 2010 Dec 16.
7
Nonequilibrium thermodynamics of restricted Boltzmann machines.受限玻尔兹曼机的非平衡热力学
Phys Rev E. 2017 Aug;96(2-1):022131. doi: 10.1103/PhysRevE.96.022131. Epub 2017 Aug 14.
8
Neighborhood-Based Stopping Criterion for Contrastive Divergence.基于邻域的对比散度停止准则
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2695-2704. doi: 10.1109/TNNLS.2017.2697455. Epub 2017 May 17.
10
Accelerating deep learning with memcomputing.利用忆阻器计算加速深度学习。
Neural Netw. 2019 Feb;110:1-7. doi: 10.1016/j.neunet.2018.10.012. Epub 2018 Nov 3.

本文引用的文献

7
8
Justifying and generalizing contrastive divergence.论证并推广对比散度。
Neural Comput. 2009 Jun;21(6):1601-21. doi: 10.1162/neco.2008.11-07-647.
9
SuperTarget and Matador: resources for exploring drug-target relationships.SuperTarget和Matador:探索药物-靶点关系的资源。
Nucleic Acids Res. 2008 Jan;36(Database issue):D919-22. doi: 10.1093/nar/gkm862. Epub 2007 Oct 16.
10
Reducing the dimensionality of data with neural networks.使用神经网络降低数据维度。
Science. 2006 Jul 28;313(5786):504-7. doi: 10.1126/science.1127647.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验