Leunissen J A, van den Hooven H W, de Jong W W
Department of Biochemistry, University of Nijmegen, The Netherlands.
J Mol Evol. 1990 Jul;31(1):33-9. doi: 10.1007/BF02101790.
The maintenance of a proper distribution of charged amino acid residues might be expected to be an important factor in protein evolution. We therefore compared the inferred changes in charge during the evolution of 43 protein families with the changes expected on the basis of random base substitutions. It was found that certain proteins, like the eye lens crystallins and most histones, display an extreme avoidance of changes in charge. Other proteins, like phospholipase A2 and ferredoxin, apparently have sustained more charged replacements than expected, suggesting a positive selection for changes in charge. Depending on function and structure of a protein, charged residues apparently can be important targets for selective forces in protein evolution. It appears that actual biased codon usage tends to decrease the proportion of charged amino acid replacements. The influence of nonrandomness of mutations is more equivocal. Genes that use the mitochondrial instead of the universal code lower the probability that charge changes will occur in the encoded proteins.