Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Nano Lett. 2011 Feb 9;11(2):589-93. doi: 10.1021/nl103590j. Epub 2010 Dec 17.
Nanoscale control of surface chemistry holds promise for tailoring the electronic, optical, and chemical properties of graphene. Toward this end, the nanofabrication of sub-5-nm heteromolecular organic nanostructures is demonstrated on epitaxial graphene using room temperature ultrahigh vacuum scanning tunneling microscopy. In particular, monolayers of the organic semiconductor 3,4,9,10-perylene-tetracarboxylic dianhydride (PTCDA) are nanopatterned on epitaxial graphene using feedback-controlled lithography (FCL) and then used as chemical resists to template the deposition of N,N'-dioctyl-3,4,9,10-perylene-tetracarboxylic diimide (PTCDI-C8). The generality of this FCL-based nanofabrication procedure suggests its applicability to a wide range of fundamental studies and prototype device fabrication on chemically functionalized graphene.
纳米尺度的表面化学控制有望改变石墨烯的电子、光学和化学性质。为此,使用室温超高真空扫描隧道显微镜在外延石墨烯上展示了亚 5nm 异质分子有机纳米结构的纳米制造。具体而言,使用反馈控制光刻(FCL)将有机半导体 3,4,9,10-苝四羧酸二酐(PTCDA)的单层图案化在外延石墨烯上,然后将其用作化学抗蚀剂来模板沉积 N,N'-二辛基-3,4,9,10-苝四羧酸二酰亚胺(PTCDI-C8)。这种基于 FCL 的纳米制造程序的通用性表明其适用于在化学功能化石墨烯上进行广泛的基础研究和原型器件制造。