Suppr超能文献

代谢网络模型和表达数据的功能集成,无需任意阈值处理。

Functional integration of a metabolic network model and expression data without arbitrary thresholding.

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.

出版信息

Bioinformatics. 2011 Feb 15;27(4):541-7. doi: 10.1093/bioinformatics/btq702. Epub 2010 Dec 20.

Abstract

MOTIVATION

Flux balance analysis (FBA) has been used extensively to analyze genome-scale, constraint-based models of metabolism in a variety of organisms. The predictive accuracy of such models has recently been improved through the integration of high-throughput expression profiles of metabolic genes and proteins. However, extensions of FBA often require that such data be discretized a priori into sets of genes or proteins that are either 'on' or 'off'. This procedure requires selecting relatively subjective expression thresholds, often requiring several iterations and refinements to capture the expression dynamics and retain model functionality.

RESULTS

We present a method for mapping expression data from a set of environmental, genetic or temporal conditions onto a metabolic network model without the need for arbitrary expression thresholds. Metabolic Adjustment by Differential Expression (MADE) uses the statistical significance of changes in gene or protein expression to create a functional metabolic model that most accurately recapitulates the expression dynamics. MADE was used to generate a series of models that reflect the metabolic adjustments seen in the transition from fermentative- to glycerol-based respiration in Saccharomyces cerevisiae. The calculated gene states match 98.7% of possible changes in expression, and the resulting models capture functional characteristics of the metabolic shift.

AVAILABILITY

MADE is implemented in Matlab and requires a mixed-integer linear program solver. Source code is freely available at http://www.bme.virginia.edu/csbl/downloads/.

摘要

动机

通量平衡分析(FBA)已被广泛用于分析各种生物体基于约束的代谢基因组规模模型。通过整合代谢基因和蛋白质的高通量表达谱,这些模型的预测准确性最近得到了提高。然而,FBA 的扩展通常需要将这些数据事先离散化为“开”或“关”的基因或蛋白质集。此过程需要选择相对主观的表达阈值,通常需要进行多次迭代和细化,以捕获表达动态并保留模型功能。

结果

我们提出了一种方法,用于将一组环境、遗传或时间条件下的表达数据映射到代谢网络模型上,而无需使用任意的表达阈值。差异表达的代谢调整(MADE)使用基因或蛋白质表达变化的统计显着性来创建最准确地再现表达动态的功能代谢模型。MADE 用于生成一系列模型,反映了酿酒酵母从发酵型呼吸到甘油型呼吸转变过程中的代谢调整。计算出的基因状态与表达变化的 98.7%的可能变化相匹配,并且所得到的模型捕获了代谢转变的功能特征。

可用性

MADE 是在 Matlab 中实现的,需要混合整数线性程序求解器。源代码可在 http://www.bme.virginia.edu/csbl/downloads/ 免费获得。

相似文献

引用本文的文献

3
Genome-scale metabolic modeling in antimicrobial pharmacology.抗菌药理学中的基因组规模代谢建模。
Eng Microbiol. 2022 Apr 23;2(2):100021. doi: 10.1016/j.engmic.2022.100021. eCollection 2022 Jun.
4
Genome-scale models in human metabologenomics.人类代谢组学中的基因组规模模型
Nat Rev Genet. 2025 Feb;26(2):123-140. doi: 10.1038/s41576-024-00768-0. Epub 2024 Sep 19.
9
Multi-scale models of whole cells: progress and challenges.全细胞的多尺度模型:进展与挑战。
Front Cell Dev Biol. 2023 Nov 7;11:1260507. doi: 10.3389/fcell.2023.1260507. eCollection 2023.

本文引用的文献

2
The biomass objective function.生物质目标函数。
Curr Opin Microbiol. 2010 Jun;13(3):344-9. doi: 10.1016/j.mib.2010.03.003. Epub 2010 Apr 27.
4
What is flux balance analysis?通量平衡分析是什么?
Nat Biotechnol. 2010 Mar;28(3):245-8. doi: 10.1038/nbt.1614.
5
Applications of genome-scale metabolic reconstructions.基因组尺度代谢重建的应用。
Mol Syst Biol. 2009;5:320. doi: 10.1038/msb.2009.77. Epub 2009 Nov 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验