Suppr超能文献

酵母细胞缺乏所有已知的神经酰胺合酶仍然可以合成复杂的鞘脂,并将神经酰胺掺入糖基磷脂酰肌醇(GPI)锚中。

Yeast cells lacking all known ceramide synthases continue to make complex sphingolipids and to incorporate ceramides into glycosylphosphatidylinositol (GPI) anchors.

机构信息

Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland.

出版信息

J Biol Chem. 2011 Feb 25;286(8):6769-79. doi: 10.1074/jbc.M110.176875. Epub 2010 Dec 20.

Abstract

In yeast, the inositolphosphorylceramides mostly contain C26:0 fatty acids. Inositolphosphorylceramides were considered to be important for viability because the inositolphosphorylceramide synthase AUR1 is essential. However, lcb1Δ cells, unable to make sphingoid bases and inositolphosphorylceramides, are viable if they harbor SLC1-1, a gain of function mutation in the 1-acyl-glycerol-3-phosphate acyltransferase SLC1. SLC1-1 allows the incorporation of C26:0 fatty acids into phosphatidylinositol (PI), thus generating PI″, an abnormal, C26-containing PI, presumably acting as surrogate for inositolphosphorylceramide. Here we show that the lethality of the simultaneous deletion of the known ceramide synthases LAG1/LAC1/LIP1 and YPC1/YDC1 can be rescued by the expression of SLC1-1 or the overexpression of AUR1. Moreover, lag1Δ lac1Δ ypc1Δ ydc1Δ (4Δ) quadruple mutants have been reported to be viable in certain genetic backgrounds but to still make some abnormal uncharacterized inositol-containing sphingolipids. Indeed, we find that 4Δ quadruple mutants make substantial amounts of unphysiological inositolphosphorylphytosphingosines but that they also still make small amounts of normal inositolphosphorylceramides. Moreover, 4Δ strains incorporate exogenously added sphingoid bases into inositolphosphorylceramides, indicating that these cells still possess an unknown pathway allowing the synthesis of ceramides. 4Δ cells also still add quite normal amounts of ceramides to glycosylphosphatidylinositol anchors. Synthesis of inositolphosphorylceramides and inositolphosphorylphytosphingosines is operated by Aur1p and is essential for growth of all 4Δ cells unless they contain SLC1-1. PI″, however, is made without the help of Aur1p. Furthermore, mannosylation of PI″ is required for the survival of sphingolipid-deficient strains, which depend on SLC1-1. In contrast to lcb1Δ SLC1-1, 4Δ SLC1-1 cells grow at 37 °C but remain thermosensitive at 44 °C.

摘要

在酵母中,肌醇磷酸神经酰胺主要含有 C26:0 脂肪酸。肌醇磷酸神经酰胺被认为对细胞活力很重要,因为肌醇磷酸神经酰胺合酶 AUR1 是必需的。然而,如果 lcb1Δ 细胞能够携带 SLC1-1(一种 1-酰基甘油-3-磷酸酰基转移酶 SLC1 的功能获得性突变),则它们无法合成鞘氨醇碱基和肌醇磷酸神经酰胺,但仍能存活。SLC1-1 允许将 C26:0 脂肪酸掺入磷脂酰肌醇 (PI) 中,从而产生 PI″,一种异常的、含有 C26 的 PI,可能作为肌醇磷酸神经酰胺的替代物。在这里,我们表明已知的神经酰胺合酶 LAG1/LAC1/LIP1 和 YPC1/YDC1 的同时缺失的致死性可以通过 SLC1-1 的表达或 AUR1 的过表达来挽救。此外,已经报道 lag1Δ lac1Δ ypc1Δ ydc1Δ (4Δ) 四重突变体在某些遗传背景下是可行的,但仍会产生一些异常的未鉴定的含有肌醇的鞘脂。事实上,我们发现 4Δ 四重突变体产生大量的非生理性肌醇磷酸植烷醇,但它们也仍会产生少量的正常肌醇磷酸神经酰胺。此外,4Δ 菌株将外源性添加的鞘氨醇碱基掺入肌醇磷酸神经酰胺中,表明这些细胞仍具有未知的途径允许神经酰胺的合成。4Δ 细胞仍将相当正常的量的神经酰胺添加到糖基磷脂酰肌醇锚上。肌醇磷酸神经酰胺和肌醇磷酸植烷醇的合成由 Aur1p 操作,对于所有 4Δ 细胞的生长都是必需的,除非它们含有 SLC1-1。然而,PI″ 的合成不需要 Aur1p 的帮助。此外,PI″ 的甘露糖化对于依赖于 SLC1-1 的鞘脂缺陷型菌株的存活是必需的。与 lcb1Δ SLC1-1 相反,4Δ SLC1-1 细胞在 37°C 下生长,但在 44°C 下仍保持热敏性。

相似文献

2
Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides.
Mol Microbiol. 2009 Mar;71(6):1523-37. doi: 10.1111/j.1365-2958.2009.06628.x. Epub 2009 Feb 2.
3
Yeast sphingolipids do not need to contain very long chain fatty acids.
Biochem J. 2007 Jan 1;401(1):205-16. doi: 10.1042/BJ20061128.
4
Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae.
PLoS One. 2016 Jan 11;11(1):e0145831. doi: 10.1371/journal.pone.0145831. eCollection 2016.
6
C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p.
EMBO J. 2001 Jun 1;20(11):2655-65. doi: 10.1093/emboj/20.11.2655.
7
Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity.
J Cell Sci. 2019 Jun 24;132(12):jcs228411. doi: 10.1242/jcs.228411.
9
Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop.
PLoS Genet. 2016 Jul 27;12(7):e1006160. doi: 10.1371/journal.pgen.1006160. eCollection 2016 Jul.

引用本文的文献

1
Chemogenetic E-MAP in Saccharomyces cerevisiae for Identification of Membrane Transporters Operating Lipid Flip Flop.
PLoS Genet. 2016 Jul 27;12(7):e1006160. doi: 10.1371/journal.pgen.1006160. eCollection 2016 Jul.
2
Functions of Ceramide Synthase Paralogs YPR114w and YJR116w of Saccharomyces cerevisiae.
PLoS One. 2016 Jan 11;11(1):e0145831. doi: 10.1371/journal.pone.0145831. eCollection 2016.
4
Biosynthesis of GPI-anchored proteins: special emphasis on GPI lipid remodeling.
J Lipid Res. 2016 Jan;57(1):6-24. doi: 10.1194/jlr.R063313. Epub 2015 Nov 12.
7
The yeast sphingolipid signaling landscape.
Chem Phys Lipids. 2014 Jan;177:26-40. doi: 10.1016/j.chemphyslip.2013.10.006. Epub 2013 Nov 9.
8
p53 and Ceramide as Collaborators in the Stress Response.
Int J Mol Sci. 2013 Mar 1;14(3):4982-5012. doi: 10.3390/ijms14034982.

本文引用的文献

1
Kei1: a novel subunit of inositolphosphorylceramide synthase, essential for its enzyme activity and Golgi localization.
Mol Biol Cell. 2009 Oct;20(20):4444-57. doi: 10.1091/mbc.e09-03-0235. Epub 2009 Sep 2.
2
Aureobasidin A arrests growth of yeast cells through both ceramide intoxication and deprivation of essential inositolphosphorylceramides.
Mol Microbiol. 2009 Mar;71(6):1523-37. doi: 10.1111/j.1365-2958.2009.06628.x. Epub 2009 Feb 2.
3
Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2136-41. doi: 10.1073/pnas.0811700106. Epub 2009 Jan 27.
4
Hydroxyurea sensitivity reveals a role for ISC1 in the regulation of G2/M.
J Biol Chem. 2009 Mar 27;284(13):8241-6. doi: 10.1074/jbc.M900004200. Epub 2009 Jan 21.
5
Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae.
Mol Cell Biol. 2009 Jan;29(1):187-200. doi: 10.1128/MCB.02271-07. Epub 2008 Oct 20.
6
Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast.
J Lipid Res. 2008 May;49(5):909-21. doi: 10.1194/jlr.R800003-JLR200. Epub 2008 Feb 23.
7
Lipid remodeling of GPI-anchored proteins and its function.
Biochim Biophys Acta. 2008 Mar;1780(3):410-20. doi: 10.1016/j.bbagen.2007.08.009. Epub 2007 Aug 25.
8
Saccharomyces cerevisiae CWH43 is involved in the remodeling of the lipid moiety of GPI anchors to ceramides.
Mol Biol Cell. 2007 Nov;18(11):4304-16. doi: 10.1091/mbc.e07-05-0482. Epub 2007 Aug 29.
9
CWH43 is required for the introduction of ceramides into GPI anchors in Saccharomyces cerevisiae.
Mol Microbiol. 2007 Sep;65(6):1493-502. doi: 10.1111/j.1365-2958.2007.05883.x. Epub 2007 Aug 21.
10
SLC1 and SLC4 encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast.
J Biol Chem. 2007 Oct 19;282(42):30845-55. doi: 10.1074/jbc.M702719200. Epub 2007 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验