Suppr超能文献

一种使酿酒酵母能够在不产生鞘脂的情况下生长的抑制基因编码一种类似于大肠杆菌脂肪酰转移酶的蛋白质。

A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase.

作者信息

Nagiec M M, Wells G B, Lester R L, Dickson R C

机构信息

Department of Biochemistry, University of Kentucky Medical Center, Lexington 40536-0084.

出版信息

J Biol Chem. 1993 Oct 15;268(29):22156-63.

PMID:8408076
Abstract

Saccharomyces cerevisiae normally requires sphingolipid biosynthesis for growth; however, mutant strains lacking sphingolipids have been isolated by suppression of a genetic defect in sphingolipid long chain base biosynthesis. To begin to understand the nature of the suppressor(s) we isolated and characterized a suppressor gene, SLC1 (sphingolipid compensation). DNA sequence analysis showed that the wild type SLC1 allele differs from the suppressor allele by a single nucleotide which changes Gln-44 in the predicted wild type protein to Leu4-4 in the predicted SLC1-1 suppressor protein. The predicted SLC1 protein sequence is homologous to the 1-acyl-sn-glycerol-3-phosphate acyltransferase of Escherichia coli encoded by the plsC gene. The homology extends to function as well since the SLC1 gene complements the growth defect in an E. coli strain mutated in plsC. These results suggest that the SLC1 protein has a fatty acyltransferase activity. SLC1 thus may be the first eucaryotic sn2-acylglyceride fatty acyltransferase gene to be cloned. SLC strains grown in the absence of long chain base make novel phosphatidylinositol derivatives (Lester, R. L., Wells, G. B., Oxford, G., and Dickson, R. C. (1993) J. Biol. Chem. 268, 845-856) having a C26 fatty acid at the sn-2 position and the same polar head groups as normal sphingolipids. We postulate that the SLC1 suppressor allele encodes a variant enzyme with an altered substrate specificity that enables it to use a C26 in place of a C16/18 fatty acid precursor to acylate the sn-2 position of inositol-containing glycerolipids.

摘要

酿酒酵母正常生长通常需要鞘脂生物合成;然而,通过抑制鞘脂长链碱基生物合成中的遗传缺陷,已分离出缺乏鞘脂的突变菌株。为了开始了解抑制因子的本质,我们分离并鉴定了一个抑制基因SLC1(鞘脂补偿基因)。DNA序列分析表明,野生型SLC1等位基因与抑制等位基因的差异仅在于一个核苷酸,该核苷酸将预测的野生型蛋白中的Gln-44变为预测的SLC1-1抑制蛋白中的Leu4-4。预测的SLC1蛋白序列与大肠杆菌中由plsC基因编码的1-酰基-sn-甘油-3-磷酸酰基转移酶同源。这种同源性也延伸到功能上,因为SLC1基因弥补了plsC突变的大肠杆菌菌株中的生长缺陷。这些结果表明SLC1蛋白具有脂肪酰基转移酶活性。因此,SLC1可能是第一个被克隆的真核sn2-酰基甘油脂肪酰基转移酶基因。在没有长链碱基的情况下生长的SLC菌株会产生新的磷脂酰肌醇衍生物(莱斯特,R.L.,韦尔斯,G.B.,牛津,G.,和迪克森,R.C.(1993年)《生物化学杂志》268,845 - 856),其sn-2位具有C26脂肪酸,并且与正常鞘脂具有相同的极性头部基团。我们推测,SLC1抑制等位基因编码一种具有改变的底物特异性的变体酶,使其能够使用C26代替C16/18脂肪酸前体来酰化含肌醇的甘油脂的sn-2位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验