Service of Infectious Diseases, University Hospital and Medical School of Geneva, 4 rue Gabrielle-Perret-Gentil, CH-1211 Geneva 14, Switzerland.
Antimicrob Agents Chemother. 2011 Mar;55(3):1008-20. doi: 10.1128/AAC.00720-10. Epub 2010 Dec 20.
An initial response of Staphylococcus aureus to encounter with cell wall-active antibiotics occurs by transmembrane signaling systems that orchestrate changes in gene expression to promote survival. Histidine kinase two-component sensor-response regulators such as VraRS contribute to this response. In this study, we examined VraS membrane sensor phosphotransfer signal transduction and explored the genetic consequences of disrupting signaling by engineering a site-specific vraS chromosomal mutation. We have used in vitro autophosphorylation assay with purified VraS[64-347] lacking its transmembrane anchor region and tested site-specific kinase domain histidine mutants. We identified VraS H156 as the probable site of autophosphorylation and show phosphotransfer in vitro using purified VraR. Genetic studies show that the vraS(H156A) mutation in three strain backgrounds (ISP794, Newman, and COL) fails to generate detectable first-step reduced susceptibility teicoplanin mutants and severely reduces first-step vancomycin mutants. The emergence of low-level glycopeptide resistance in strain ISP794, derived from strain 8325 (ΔrsbU), did not require a functional σ(B), but rsbU restoration could enhance the emergence frequency supporting a role for this alternative sigma factor in promoting glycopeptide resistance. Transcriptional analysis of vraS(H156A) strains revealed a pronounced reduction but not complete abrogation of the vraRS operon after exposure to cell wall-active antibiotics, suggesting that additional factors independent of VraS-driven phosphotransfer, or σ(B), exist for this promoter. Collectively, our results reveal important details of the VraRS signaling system and predict that pharmacologic blockade of the VraS sensor kinase will have profound effects on blocking emergence of cell wall-active antibiotic resistance in S. aureus.
金黄色葡萄球菌在遇到细胞壁活性抗生素时的初始反应是通过跨膜信号系统发生的,该系统协调基因表达的变化以促进存活。组氨酸激酶双组分传感器-响应调节剂,如 vraRS,有助于这种反应。在这项研究中,我们研究了 vraS 膜传感器磷酸转移信号转导,并通过工程构建特异性 vraS 染色体突变来探索破坏信号的遗传后果。我们使用体外自动磷酸化测定法,用缺乏其跨膜锚定区的纯化 vraS[64-347]进行测试,并测试了特异性激酶结构域组氨酸突变体。我们确定 vraS H156 是自动磷酸化的可能部位,并使用纯化的 vraR 显示体外磷酸转移。遗传研究表明,三个菌株背景(ISP794、Newman 和 COL)中的 vraS(H156A)突变不能产生可检测的第一步降低对替考拉宁的敏感性突变体,并严重降低第一步降低对万古霉素的敏感性突变体。源自菌株 8325(ΔrsbU)的菌株 ISP794 中低水平糖肽耐药的出现不需要功能性σ(B),但 rsbU 恢复可以提高出现频率,支持该替代σ因子在促进糖肽耐药中的作用。vraS(H156A)菌株的转录分析显示,在暴露于细胞壁活性抗生素后,vraRS 操纵子的表达明显减少但并未完全消除,这表明存在其他因素独立于 vraS 驱动的磷酸转移或σ(B),对于该启动子。总的来说,我们的结果揭示了 vraRS 信号系统的重要细节,并预测了 vraS 传感器激酶的药理学阻断将对阻止金黄色葡萄球菌细胞壁活性抗生素耐药性的出现产生深远影响。