Suppr超能文献

枚举病毒衣壳组装途径:置换群作用下的树轨道。

Enumeration of viral capsid assembly pathways: tree orbits under permutation group action.

机构信息

Department of Mathematics, University of Florida, Gainesville, 32611, USA.

出版信息

Bull Math Biol. 2011 Apr;73(4):726-53. doi: 10.1007/s11538-010-9606-4. Epub 2010 Dec 21.

Abstract

This paper uses combinatorics and group theory to answer questions about the assembly of icosahedral viral shells. Although the geometric structure of the capsid (shell) is fairly well understood in terms of its constituent subunits, the assembly process is not. For the purpose of this paper, the capsid is modeled by a polyhedron whose facets represent the monomers. The assembly process is modeled by a rooted tree, the leaves representing the facets of the polyhedron, the root representing the assembled polyhedron, and the internal vertices representing intermediate stages of assembly (subsets of facets). Besides its virological motivation, the enumeration of orbits of trees under the action of a finite group is of independent mathematical interest. If G is a finite group acting on a finite set X, then there is a natural induced action of G on the set T(x) of trees whose leaves are bijectively labeled by the elements of X. If G acts simply on X, then |X|:=|X(n)|=n·|G|, where n is the number of G-orbits in X. The basic combinatorial results in this paper are (1) a formula for the number of orbits of each size in the action of G on T(x)(n), for every n, and (2) a simple algorithm to find the stabilizer of a tree τ ∈T(x) in G that runs in linear time and does not need memory in addition to its input tree. These results help to clarify the effect of symmetry on the probability and number of assembly pathways for icosahedral viral capsids, and more generally for any finite, symmetric macromolecular assembly.

摘要

本文运用组合学和群论来回答关于二十面体病毒壳组装的问题。尽管衣壳(壳)的几何结构就其组成亚基而言已经相当清楚,但组装过程却并非如此。就本文的目的而言,衣壳被建模为一个多面体,其面表示单体。组装过程被建模为一棵有根树,叶子代表多面体的面,根代表组装好的多面体,内部顶点代表组装过程的中间阶段(面的子集)。除了病毒学方面的动机之外,有限群作用下树的轨道的枚举本身也具有独立的数学兴趣。如果 G 是作用在有限集 X 上的有限群,那么对于树的集合 T(x),存在一个自然的诱导 G 作用,其叶子由 X 的元素以双射的方式标记。如果 G 在 X 上单纯作用,那么 |X|:=|X(n)|=n·|G|,其中 n 是 X 中 G-轨道的数量。本文的基本组合学结果为:(1)对于每个 n,G 在 T(x)(n)上的每个大小的轨道的数量的公式;(2)一个简单的算法,用于找到 G 在 T(x)中的树 τ 的稳定子,该算法在线性时间内运行,并且除了输入树之外不需要额外的内存。这些结果有助于阐明对称性对二十面体病毒衣壳组装途径的概率和数量的影响,更一般地说,对任何有限的、对称的大分子组装都有影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验