Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, Texas 78712, United States.
J Am Chem Soc. 2011 Feb 2;133(4):1141-4. doi: 10.1021/ja1104156. Epub 2010 Dec 22.
Under the conditions of ruthenium-catalyzed transfer hydrogenation, 1,1-disubstituted allenes 1a-c and alcohols 2a-g engage in redox-triggered generation of allylruthenium-aldehyde pairs to form products of hydrohydroxyalkylation 3a-g, 4a-g, and 5a-g with complete branched regioselectivity. By exploiting Curtin-Hammett effects, good to excellent levels of anti-diastereoselectivity (4:1 to >20:1) are obtained. Thus, all carbon quaternary centers are formed in a diastereoselective fashion upon carbonyl addition from the alcohol oxidation level in the absence of premetalated nucleophiles or stoichiometric byproducts. Exposure of allene 1b to equimolar quantities of alcohol 2a and aldehyde 6b under standard reaction conditions delivers adducts 4a and 4b in a 1:1 ratio. Similarly, exposure of allene 1b to equimolar quantities of aldehyde 6a and alcohol 2b provides adducts 4a and 4b in an identical equimolar ratio. Exposure of allene 1b to d(2)-p-nitrobenzyl alcohol, deuterio-2a, under standard reaction conditions delivers the product of hydrohydroxyalkylation, deuterio-4a, which incorporates deuterium at the carbinol position (>95% (2)H) and the interior vinylic position (34% (2)H). Competition experiments involving exposure of allene 1b to equimolar quantities of benzylic alcohols 2a and deuterio-2a reveal no significant kinetic effect. The collective data corroborate rapid, reversible alcohol dehydrogenation, allene hydrometalation, and (E)-, (Z)-isomerization of the transient allylruthenium in advance of turnover-limiting carbonyl addition. Notably, analogous allene-aldehyde reductive C-C couplings employing 2-propanol as the terminal reductant display poor levels of anti-diastereoselectivity, suggesting that carbonyl addition is not turnover-limiting in reactions conducted from the aldehyde oxidation level.
在钌催化转移氢化的条件下,1,1-二取代丙二烯 1a-c 和醇 2a-g 参与氧化还原触发的烯丙基钌-醛对的生成,以形成具有完全支化区域选择性的氢羟烷基化产物 3a-g、4a-g 和 5a-g。通过利用 Curtin-Hammett 效应,获得了良好至优秀的反非对映选择性水平(4:1 至>20:1)。因此,在没有预金属化亲核试剂或化学计量副产物的情况下,从醇氧化水平羰基加成时,所有的碳季碳中心都以非对映选择性的方式形成。在标准反应条件下,将等摩尔量的醇 2a 和醛 6b 暴露于丙二烯 1b 中,得到产物 4a 和 4b 的比例为 1:1。同样,将等摩尔量的醛 6a 和醇 2b 暴露于丙二烯 1b 中,也以相同的等摩尔比例得到产物 4a 和 4b。将丙二烯 1b 暴露于 d(2)-对硝基苄醇、氘代 2a 下,得到氢羟烷基化产物氘代 4a,其中碳醇位置(>95%(2)H)和内部烯丙位(34%(2)H)掺入氘。涉及将丙二烯 1b 暴露于等摩尔量的苄醇 2a 和氘代 2a 的竞争实验未显示出显著的动力学效应。综合数据证实了快速可逆的醇脱氢、丙二烯水合金属化以及瞬态烯丙基钌的(E)-、(Z)-异构化,这些反应在周转限制的羰基加成之前进行。值得注意的是,使用 2-丙醇作为末端还原剂的类似的丙二烯-醛还原 C-C 偶联显示出较差的反非对映选择性水平,表明从醛氧化水平进行的反应中,羰基加成不是周转限制步骤。