Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
Plant J. 2011 Jan;65(1):87-95. doi: 10.1111/j.1365-313X.2010.04408.x. Epub 2010 Nov 17.
Rice (Oryza sativa) produces momilactone diterpenoids as both phytoalexins and allelochemicals. Strikingly, the rice genome contains a biosynthetic gene cluster for momilactone production, located on rice chromosome 4, which contains two cytochrome P450 (CYP) mono-oxygenases, CYP99A2 and CYP99A3, with undefined roles; although it has been previously shown that RNA interference double knock-down of this pair of closely related CYPs reduced momilactone accumulation. Here we attempted biochemical characterization of CYP99A2 and CYP99A3, which was ultimately achieved by complete gene recoding, enabling functional recombinant expression in bacteria. With these synthetic gene constructs it was possible to demonstrate that while CYP99A2 does not exhibit significant activity with diterpene substrates, CYP99A3 catalyzes consecutive oxidations of the C19 methyl group of the momilactone precursor syn-pimara-7,15-diene to form, sequentially, syn-pimaradien-19-ol, syn-pimaradien-19-al, and syn-pimaradien-19-oic acid. These are presumably intermediates in momilactone biosynthesis, as a C19 carboxylic acid moiety is required for formation of the core 19,6-γ-lactone ring structure. We further were able to detect syn-pimaradien-19-oic acid in rice plants, which indicates physiological relevance for the observed activity of CYP99A3. In addition, we found that CYP99A3 also oxidized syn-stemod-13(17)-ene at C19 to produce, sequentially, syn-stemoden-19-ol, syn-stemoden-19-al, and syn-stemoden-19-oic acid, albeit with lower catalytic efficiency than with syn-pimaradiene. Although the CYP99A3 syn-stemodene-derived products were not detected in planta, these results nevertheless provide a hint at the currently unknown metabolic fate of this diterpene in rice. Regardless of any wider role, our results strongly indicate that CYP99A3 acts as a multifunctional diterpene oxidase in momilactone biosynthesis.
水稻(Oryza sativa)产生的莫米松二萜类化合物既是植物抗毒素,也是化感物质。引人注目的是,水稻基因组中存在一个莫米松生物合成基因簇,位于水稻染色体 4 上,该基因簇包含两个细胞色素 P450(CYP)单加氧酶 CYP99A2 和 CYP99A3,其功能尚未明确;尽管此前的研究表明,这对密切相关的 CYP 的 RNA 干扰双敲低会降低莫米松的积累。在这里,我们试图对 CYP99A2 和 CYP99A3 进行生化表征,这最终通过完全基因重编码得以实现,从而能够在细菌中进行功能性重组表达。利用这些合成基因构建体,我们证明了 CYP99A2 对二萜类底物没有显著的活性,而 CYP99A3 则催化莫米松前体 syn-pimara-7,15-diene 的 C19 甲基的连续氧化,依次形成 syn-pimaradien-19-ol、syn-pimaradien-19-al 和 syn-pimaradien-19-oic acid。这些可能是莫米松生物合成的中间体,因为形成核心 19,6-γ-内酯环结构需要 C19 羧酸部分。我们还能够在水稻植物中检测到 syn-pimaradien-19-oic acid,这表明 CYP99A3 的观察到的活性具有生理相关性。此外,我们发现 CYP99A3 还在 C19 氧化 syn-stemod-13(17)-ene,依次生成 syn-stemoden-19-ol、syn-stemoden-19-al 和 syn-stemoden-19-oic acid,尽管其催化效率低于 syn-pimaradiene。尽管在植物中未检测到 CYP99A3 衍生的 syn-stemodene 产物,但这些结果仍提示了目前未知的该二萜类在水稻中的代谢命运。无论其更广泛的作用如何,我们的结果都强烈表明 CYP99A3 在莫米松生物合成中作为一种多功能二萜氧化酶发挥作用。