Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
Colloids Surf B Biointerfaces. 2011 Apr 1;83(2):198-203. doi: 10.1016/j.colsurfb.2010.11.006. Epub 2010 Dec 1.
The influence of particle size on the activity and recycling capabilities of enzyme conjugated magnetic nanoparticles was studied. Co-precipitation and oxidation of Fe(OH)(2) methods were used to fabricate three different sizes of magnetic nanoparticles (5 nm, 26 nm and 51 nm). Glucose oxidase was covalently bound to the magnetic nanoparticles by modifying the surfaces with 3-(aminopropyl)triethoxysilane (APTES) and a common protein crosslinking agent, glutaraldehyde. Analysis by Transmission Electron Microscopy (TEM) showed that the morphology of the magnetic nanoparticles to be spherical and sizes agreed with results of the Brunauer, Emmett, and Teller (BET) method. Magnetic strength of the nanoparticles was analyzed by magnetometry and found to be 49 emu g(-1) (5 nm), 73 emu g(-1) (26 nm), and 85 emu g(-1) (51 nm). X-ray photoelectron spectroscopy (XPS) confirmed each step of the magnetic nanoparticle surface modification and successful glucose oxidase binding. The immobilized enzymes retained 15-23% of the native GOx activity. Recycling stability studies showed approximately 20% of activity loss for the large (51 nm) and medium (26 nm) size glucose oxidase-magnetic nanoparticle (GOx-MNP) bioconjugate and about 96% activity loss for the smallest GOx-MNP bioconjugate (5 nm) after ten cycles. The bioconjugates demonstrated equivalent total product conversions as a single reaction of an equivalent amount of the native enzyme after the 5th cycle for the 26 nm nanoparticles and the 7th cycle for the 51 nm nanoparticles.
研究了粒径对酶偶联磁性纳米粒子的活性和循环能力的影响。采用共沉淀和氧化的 Fe(OH)(2)方法制备了三种不同粒径的磁性纳米粒子(5nm、26nm 和 51nm)。通过用 3-(氨丙基)三乙氧基硅烷(APTES)和常见的蛋白质交联剂戊二醛修饰表面,将葡萄糖氧化酶共价结合到磁性纳米粒子上。透射电子显微镜(TEM)分析表明,磁性纳米粒子的形态为球形,粒径与 Brunauer、Emmett 和 Teller(BET)法的结果一致。通过磁强计分析了纳米粒子的磁性强度,发现其值分别为 49 emu g(-1)(5nm)、73 emu g(-1)(26nm)和 85 emu g(-1)(51nm)。X 射线光电子能谱(XPS)证实了磁性纳米粒子表面修饰和葡萄糖氧化酶结合的每一步。固定化酶保留了 15-23%的天然 GOx 活性。循环稳定性研究表明,对于较大(51nm)和中等(26nm)尺寸的葡萄糖氧化酶-磁性纳米粒子(GOx-MNP)生物偶联物,约有 20%的活性损失,而对于最小的 GOx-MNP 生物偶联物(5nm),约有 96%的活性损失,在 10 个循环后。在第 5 个循环时,对于 26nm 纳米粒子,在第 7 个循环时,对于 51nm 纳米粒子,生物偶联物的总产物转化率与单个反应中相同数量的天然酶相当。