文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Investigation of nanoparticle immobilized cellulase: nanoparticle identity, linker length and polyphenol hydrolysis.

作者信息

Kumar Sanjay, Morya Vinod, Gadhavi Joshna, Vishnoi Anjani, Singh Jaskaran, Datta Bhaskar

机构信息

Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India.

出版信息

Heliyon. 2019 May 20;5(5):e01702. doi: 10.1016/j.heliyon.2019.e01702. eCollection 2019 May.


DOI:10.1016/j.heliyon.2019.e01702
PMID:31193471
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6529720/
Abstract

Cellulase containing nanobiocatalysts have been useful as an extraction tool based on their ability to disrupt plant cell walls. In this work, we investigate the effect of nanoparticle composition and chemical linkage towards immobilized cellulase activity. Cellulase nanoconstructs have been prepared, characterized and compared for their loading efficiencies with standard assays and enzyme kinetics and correlate well with the cognate loading efficiencies. Application of the cellulase-immobilized nanoparticles on onion skins results in release of a distinctive composition of polyphenols. The aglycosidic form of quercetin is the dominant product of onion skin hydrolysis affected by cellulase nanobiocatalysts. Chitosan-coated iron oxide nanoparticles with APTES-conjugated cellulase are found to be most effective for polyphenol release and for transformation of glycosidic to aglycosidic form of quercetin. These results shed light on the activity of immobilized cellulase beyond their role in cell wall disruption and are important for the practical application of cellulase nanobiocatalysts.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/d116f60a058d/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/ba5629feb19b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/56c5b03e7084/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/fd72f7cd9a9d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/e39de0992c54/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/7b49612a697a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/9caf4d92df90/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/738e9d5c5f21/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/a7658cdc632a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/adb3a2f3566d/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/4d88bb43d7d8/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/ad536bf7c63e/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/d116f60a058d/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/ba5629feb19b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/56c5b03e7084/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/fd72f7cd9a9d/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/e39de0992c54/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/7b49612a697a/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/9caf4d92df90/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/738e9d5c5f21/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/a7658cdc632a/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/adb3a2f3566d/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/4d88bb43d7d8/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/ad536bf7c63e/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a18b/6529720/d116f60a058d/gr12.jpg

相似文献

[1]
Investigation of nanoparticle immobilized cellulase: nanoparticle identity, linker length and polyphenol hydrolysis.

Heliyon. 2019-5-20

[2]
Nanobiocatalyst facilitated aglycosidic quercetin as a potent inhibitor of tau protein aggregation.

Int J Biol Macromol. 2019-7-12

[3]
Evaluation of free and immobilized cellulase on chitosan-modified magnetic nanoparticles for saccharification of sorghum residue.

Bioprocess Biosyst Eng. 2024-5

[4]
Reusable nanobiocatalysts for the efficient extraction of pigments from orange peel.

J Food Sci Technol. 2016-7

[5]
Onion skin waste as a valorization resource for the by-products quercetin and biosugar.

Food Chem. 2015-12-1

[6]
Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde.

Enzyme Microb Technol. 2020-8

[7]
Characterization and immobilization of liposome-bound cellulase for hydrolysis of insoluble cellulose.

Bioresour Technol. 2007-5

[8]
Magnetic nickel nanostructure as cellulase immobilization surface for the hydrolysis of lignocellulosic biomass.

Int J Biol Macromol. 2022-6-1

[9]
Characterization and performance of immobilized amylase and cellulase.

Appl Biochem Biotechnol. 2004

[10]
Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.

J Vis Exp. 2019-4-30

引用本文的文献

[1]
Current perspective on production and applications of microbial cellulases: a review.

Bioresour Bioprocess. 2021-10-5

[2]
Ammonium release in synthetic and human urine by a urease immobilized nanoconstruct.

RSC Adv. 2024-2-27

[3]
Comparative Genomic Analyses of Cellulolytic Machinery Reveal Two Nutritional Strategies of Marine Labyrinthulomycetes Protists.

Microbiol Spectr. 2023-2-6

[4]
Cellulase Immobilization on Nanostructured Supports for Biomass Waste Processing.

Nanomaterials (Basel). 2022-10-27

[5]
Sustainable green approach to synthesize FeO/α-FeO nanocomposite using waste pulp of Syzygium cumini and its application in functional stability of microbial cellulases.

Sci Rep. 2021-12-21

本文引用的文献

[1]
DNA directed immobilization enzyme on polyamidoamine tethered magnetic composites with high reusability and stability.

J Mater Chem B. 2016-9-21

[2]
Attachment of poly(acrylic acid) to 3-aminopropyltriethoxysilane surface-modified hydroxyapatite.

J Mater Chem B. 2013-11-14

[3]
Xylanase immobilization on magnetite and magnetite core/shell nanocomposites using two different flexible alkyl length organophosphonates: Linker length and shell effect on enzyme catalytic activity.

Int J Biol Macromol. 2018-4-21

[4]
Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants.

Biophys Rev. 2010-5

[5]
Assessing safety and protein interactions of surface-modified iron oxide nanoparticles for potential use in biomedical areas.

Colloids Surf B Biointerfaces. 2017-6-1

[6]
Bioactive polyphenols and cardiovascular disease: chemical antagonists, pharmacological agents or xenobiotics that drive an adaptive response?

Br J Pharmacol. 2017-6

[7]
Reusable nanobiocatalysts for the efficient extraction of pigments from orange peel.

J Food Sci Technol. 2016-7

[8]
Role of oxidative stress and antioxidants in daily nutrition and human health.

Nutrition. 2017-1

[9]
Gd(III)-Gold Nanoconjugates Provide Remarkable Cell Labeling for High Field Magnetic Resonance Imaging.

Bioconjug Chem. 2017-1-18

[10]
Onion skin waste as a valorization resource for the by-products quercetin and biosugar.

Food Chem. 2015-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索