Laboratory of Anatomy, Biomechanics and Organogenesis (CP 619), Université Libre de Bruxelles, Bruxelles, Belgium.
Spine (Phila Pa 1976). 2011 Mar 15;36(6):E413-22. doi: 10.1097/BRS.0b013e3181dc844a.
In vitro and modeling study of upper cervical spine (UCS) three-dimensional (3D) kinematics and muscle moment arm (MA) during axial rotation (AR) and flexion extension (FE).
To create musculoskeletal models with movement simulation including helical axis (HA) and muscle features.
Integration of various kinematics and muscle data into specific-specimen 3D anatomical models with graphical representation of HA and muscle orientation and MA is not reported for the UCS musculoskeletal system.
Kinematics, anatomical, and computed tomographic imaging data were sampled in 10 anatomical specimens. Using technical markers and anatomical landmarks digitizing, spatial position of segments was computed for five discrete positions of AR and FE using a 3D digitizer. To obtain musculoskeletal model simulation, a registration method was used to combine collected data. Processing was performed using orientation vector and HA computation and suboccipital muscle features (i.e., length and MA) relative to motion angle.
Range of motion and coupling were in agreement with previous in vitro studies. HA (i.e., location and orientation) showed low variation at the occipitoaxial and atlantoaxial levels for FE and AR, respectively. The main orientation of the HA was vertical at C1-C2 during AR and horizontal at C0-C1 during FE. For muscles MA, absolute peak value (ranging from 20 to 40 mm) occurred at different poses depending on the analyzed muscle and motion. Poor magnitude was found for obliquus capitis inferior and rectus capitis posterior minor in FE and AR, respectively.
On the basis of previous methods, we developed a protocol to create UCS musculoskeletal modeling with motion simulation including HA and suboccipital muscles representation. In this study, simultaneous segmental movement displaying with HA and muscles features was shown to be feasible.
对颈椎上段(UCS)三维(3D)运动学和屈伸旋转时肌肉力臂(MA)进行体外和模型研究。
建立包含螺旋轴(HA)和肌肉特征的运动模拟的肌肉骨骼模型。
UCS 肌肉骨骼系统中,尚未有将各种运动学和肌肉数据整合到具有 HA 和肌肉方向以及 MA 的特定标本 3D 解剖模型中的报道。
在 10 个解剖标本中采集运动学、解剖和计算机断层扫描成像数据。使用技术标记和解剖标志数字化,通过 3D 数字化仪在 AR 和 FE 的五个离散位置计算节段的空间位置。为了获得肌肉骨骼模型模拟,使用注册方法来组合收集的数据。处理过程使用方向向量和 HA 计算以及与运动角度相关的枕下肌肉特征(即长度和 MA)。
运动范围和耦合与之前的体外研究一致。FE 和 AR 时,HA(即位置和方向)在枕颈和寰枢关节水平的变化较小。AR 时 HA 的主要方向为 C1-C2 垂直,FE 时为 C0-C1 水平。对于肌肉 MA,绝对峰值(范围为 20 至 40 毫米)取决于分析的肌肉和运动,在不同的姿势出现。FE 和 AR 时,斜颈下肌和头后小直肌的幅度较小。
在之前的方法基础上,我们开发了一种创建 UCS 肌肉骨骼建模的方案,包括运动模拟和枕下肌肉表示。在这项研究中,同时显示 HA 和肌肉特征的节段运动被证明是可行的。