Beyer Benoît, Feipel Véronique, Dugailly Pierre-Michel
Department of Physiotherapy and Rehabilitation, Faculty of Motor Sciences, Laboratory of Functional Anatomy, Université Libre de Bruxelles, Brussels, Belgium.
Department of Anatomy, Faculty of Medicine, Laboratory of Anatomy, Biomechanics and Organogenesis, Université Libre de Bruxelles, Brussels, Belgium.
J Craniovertebr Junction Spine. 2020 Jul-Sep;11(3):217-225. doi: 10.4103/jcvjs.JCVJS_78_20. Epub 2020 Aug 14.
The motion of the upper cervical spine (UCS) has a great interest for analyzing the biomechanical features of this joint complex, especially in case of instability. Although investigators have analyzed numerous kinematics and musculoskeletal characteristics, there are still little data available regarding several suboccipital ligaments such as occipito-atlantal, atlantoaxial, and cruciform ligaments.
The aim of this study is to quantify the length and moment arm magnitudes of suboccipital ligaments and to integrate data into specific 3D-model, including musculoskeletal and motion representation.
Based on a recent method, suboccipital ligaments were identified using UCS anatomical modeling. Biomechanical characteristics of these anatomical structures were assessed for sagittal and transversal displacements regarding length and moment arm alterations.
Outcomes data indicated length alterations >25% for occipito-atlantal, atlanto-axial and apical ligaments. The length alteration of unique ligaments was negligible. Length variation was dependent on the motion direction considered. Regarding moment arm, larger magnitudes were observed for posterior ligaments, and consistent alteration was depicted for these structures.
These outcomes supply relevant biomechanical characteristics of the UCS ligaments in flexion-extension and axial rotation by quantifying length and moment arm magnitude. Moreover, 3D anatomical modeling and motion representation can help in the process of understanding of musculoskeletal behaviors of the craniovertebral junction.
上颈椎(UCS)的运动对于分析该关节复合体的生物力学特征具有重要意义,尤其是在不稳定的情况下。尽管研究人员已经分析了众多运动学和肌肉骨骼特征,但关于一些枕下韧带,如枕寰、寰枢和十字韧带的数据仍然很少。
本研究的目的是量化枕下韧带的长度和力臂大小,并将数据整合到特定的三维模型中,包括肌肉骨骼和运动表现。
基于最近的一种方法,通过UCS解剖模型识别枕下韧带。评估这些解剖结构在矢状面和横断面位移方面的长度和力臂变化的生物力学特征。
结果数据表明,枕寰、寰枢和顶韧带的长度变化>25%。单一韧带的长度变化可忽略不计。长度变化取决于所考虑的运动方向。关于力臂,后韧带观察到更大的大小,并且这些结构呈现出一致的变化。
这些结果通过量化长度和力臂大小,提供了UCS韧带在屈伸和轴向旋转方面的相关生物力学特征。此外,三维解剖模型和运动表现有助于理解颅颈交界区的肌肉骨骼行为。