Department of Psychology, University of Basel, and Department of Biomedicine, University Children's Hospital, Basel, Switzerland.
PLoS One. 2010 Dec 16;5(12):e15246. doi: 10.1371/journal.pone.0015246.
The genetic basis of phenotypic variation can be partially explained by the presence of copy-number variations (CNVs). Currently available methods for CNV assessment include high-density single-nucleotide polymorphism (SNP) microarrays that have become an indispensable tool in genome-wide association studies (GWAS). However, insufficient concordance rates between different CNV assessment methods call for cautious interpretation of results from CNV-based genetic association studies. Here we provide a cross-population, microarray-based map of copy-number variant regions (CNVRs) to enable reliable interpretation of CNV association findings. We used the Affymetrix Genome-Wide Human SNP Array 6.0 to scan the genomes of 1167 individuals from two ethnically distinct populations (Europe, N=717; Rwanda, N=450). Three different CNV-finding algorithms were tested and compared for sensitivity, specificity, and feasibility. Two algorithms were subsequently used to construct CNVR maps, which were also validated by processing subsamples with additional microarray platforms (Illumina 1M-Duo BeadChip, Nimblegen 385K aCGH array) and by comparing our data with publicly available information. Both algorithms detected a total of 42669 CNVs, 74% of which clustered in 385 CNVRs of a cross-population map. These CNVRs overlap with 862 annotated genes and account for approximately 3.3% of the haploid human genome.We created comprehensive cross-populational CNVR-maps. They represent an extendable framework that can leverage the detection of common CNVs and additionally assist in interpreting CNV-based association studies.
表型变异的遗传基础可以部分解释为存在拷贝数变异(CNV)。目前用于 CNV 评估的方法包括高密度单核苷酸多态性(SNP)微阵列,它已成为全基因组关联研究(GWAS)中不可或缺的工具。然而,不同 CNV 评估方法之间的一致性率不足,需要谨慎解释基于 CNV 的遗传关联研究的结果。在这里,我们提供了一个基于微阵列的跨人群拷贝数变异区域(CNVR)图谱,以实现对 CNV 关联发现的可靠解释。我们使用 Affymetrix 全基因组人类 SNP 阵列 6.0 对来自两个不同种族(欧洲,N=717;卢旺达,N=450)的 1167 个人的基因组进行了扫描。测试并比较了三种不同的 CNV 发现算法,以评估其灵敏度、特异性和可行性。随后使用两种算法构建 CNVR 图谱,并通过使用额外的微阵列平台(Illumina 1M-Duo BeadChip、Nimblegen 385K aCGH 阵列)处理亚样本和将我们的数据与公开可用信息进行比较来验证这些图谱。两种算法共检测到 42669 个 CNV,其中 74%聚类在跨人群图谱中的 385 个 CNVR 中。这些 CNVR 与 862 个注释基因重叠,约占单倍体人类基因组的 3.3%。我们创建了全面的跨人群 CNVR 图谱。它们代表了一个可扩展的框架,可以利用常见 CNV 的检测,并额外帮助解释基于 CNV 的关联研究。