WestCHEM, School of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland.
J Phys Chem A. 2010 Dec 30;114(51):13418-33. doi: 10.1021/jp1098624. Epub 2010 Dec 7.
The charge density in the tri-iron methoxymethylidyne cluster Fe(3)(μ-H)(μ-COMe)(CO)(10) (1) has been studied experimentally at 100 K and by DFT calculations on the isolated molecule using the Quantum Theory of Atoms in Molecules (QTAIM). The COMe ligand acts as a nearly symmetric bridge toward two of the Fe atoms (Fe-C = 1.8554(4), 1.8608(4) Å) but with a much longer interaction to the third Fe atom, Fe-C = 2.6762(4) Å. Complex 1 provides a classic example where topological QTAIM catastrophes render an exact structure description ambiguous. While all experimental and theoretical studies agree in finding no direct metal-metal interaction for the doubly bridged Fe-Fe vector, the chemical bonding between the Fe(CO)(4) unit and the Fe(2)(μ-H)(μ-COMe)(CO)(6) moiety in terms of conventional QTAIM descriptors is much less clear. Bond paths implying direct Fe-Fe interactions and a weak interaction between the COMe ligand and the Fe(CO)(4) center are observed, depending on the experimental or theoretical density model examined. Theoretical studies using the Electron Localizability Indicator (ELI-D) suggest the metal-metal bonding is more significant, while the delocalization indices imply that both Fe-Fe bonding and Fe···C(alkylidyne) bonding are equally important. The source functions at various interfragment reference points are similar and highly delocalized. The potential-energy surface (PES) for the migration of the alkylidyne group from a μ(2) to a semi-μ(3) coordination mode has been explored by DFT calculations on 1 and the model complexes M(3)(μ-H)(μ-CH)(CO)(10) (M = Fe, 2; Ru, 3; and Os, 4). These calculations confirm a semi-μ(3) bridging mode for the alkylidyne ligand as the minimum-energy geometry for compounds 2-4 and demonstrate that, for 1, both Fe-Fe and Fe···C(alkylidyne) interactions are important in the cluster bonding. The PES between μ(2) and semi-μ(3) alkylidyne coordination for 1 is extremely soft, and the interconversion between several topological isomers is predicted to occur with almost no energy cost. Analysis of the density ρ(r) and the Laplacian of the density ▽(2)ρ(r(b)) in the methoxymethylidyne ligand is consistent with a partial π-bond character of the C-O bond, associated with an sp(2) hybridization for these atoms.
三铁甲氧基甲叉簇 Fe(3)(μ-H)(μ-COMe)(CO)(10) (1) 的电荷密度已在 100 K 下通过实验和使用分子中的原子量子理论 (QTAIM) 对分离分子的 DFT 计算进行了研究。COMe 配体作为两个 Fe 原子的几乎对称桥接体(Fe-C = 1.8554(4),1.8608(4) Å),但与第三个 Fe 原子的相互作用要长得多,Fe-C = 2.6762(4) Å。复合物 1 提供了一个经典的例子,其中拓扑 QTAIM 灾难使得对双键桥接 Fe-Fe 矢量的精确结构描述变得模糊。虽然所有的实验和理论研究都一致认为,对于双桥接的 Fe-Fe 矢量,不存在直接的金属-金属相互作用,但根据传统的 QTAIM 描述符,Fe(CO)(4) 单元与 Fe(2)(μ-H)(μ-COMe)(CO)(6)部分之间的化学结合要模糊得多。根据所检查的实验或理论密度模型,观察到暗示直接 Fe-Fe 相互作用和 COMe 配体与 Fe(CO)(4)中心之间弱相互作用的键路径。理论研究使用电子局部化指标 (ELI-D) 表明金属-金属键合更为重要,而离域指数表明 Fe-Fe 键合和 Fe···C(炔基)键合同样重要。各种片段间参考点的源函数相似且高度离域。通过对 1 和模型配合物 M(3)(μ-H)(μ-CH)(CO)(10)(M = Fe, 2;Ru, 3;和 Os, 4)进行 DFT 计算,研究了炔基从 μ(2)到半 μ(3)配位模式迁移的势能面 (PES)。这些计算证实了炔基的半 μ(3)桥接模式是化合物 2-4 的最低能量几何形状,并表明对于 1,Fe-Fe 和 Fe···C(炔基)相互作用都在簇键合中很重要。对于 1,μ(2)和半 μ(3)炔基配位之间的 PES 非常柔软,并且预测几种拓扑异构体之间的互变异构会几乎没有能量成本发生。对甲氧基甲叉配体中 ρ(r)和密度▽(2)ρ(r(b))的拉普拉斯的分析与 C-O 键的部分 π 键特征一致,与这些原子的 sp(2)杂化有关。