Fachbereich Chemie, Fachgebiet Anorganische Chemie I, Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität Darmstadt, Petersenstr. 18, 64287, Darmstadt, Germany.
Nanoscale. 2011 Mar;3(3):1102-12. doi: 10.1039/c0nr00723d. Epub 2010 Dec 23.
Cuprous oxide agglomerates composed of 4-10 nm Cu2O nanoparticles were deposited on multiwalled carbon nanotubes (MWCNTs) and on ZnO/MWCNTs to give binary [Cu2O/MWCNT] and ternary [Cu2O/ZnO/MWCNT] composites. Di-aqua-bis[2-(methoxyimino)propanoato]copper CuO2CCCH3NOMe·2H2O 1 in DMF was used as single source precursor for the deposition of nanoscaled Cu2O. The precursor decomposes either in air or under argon to yield CuO2 by in situ redox reaction. Thermogravimetric coupled mass spectroscopic analysis (TG-MS) of 1 revealed that methanol formed during the decomposition of 1 acts as a potential in situ reducing agent. Scanning electron microscopy (SEM) of the binary [Cu2O/MWCNT] nano-composite shows an increase of cuprous oxide loading depending on the precursor amount, along the periphery of the MWCNTs as well as formation of larger particle agglomerates. Transmission electron microscopy (TEM) of the sample shows crystalline domains of size 4-10 nm surrounded by an amorphous region within the larger particles. SEM and TEM of ternary [Cu2O/ZnO/MWCNT] clearly reveal that Cu2O nanoparticles are primarily deposited on ZnO rather than on MWCNTs. The catalytic activities of the [Cu2O/MWCNT] and [Cu2O/ZnO/MWCNT] binary and ternary composites were studied for the selective partial oxidation of ethanol to acetaldehyde with molecular oxygen. While using binary [Cu2O/MWCNT] (13.8 wt% Cu) as catalyst, acetaldehyde was obtained with a yield of 87% at 355 °C (selectivity 96% and conversion 91%). When nanoscale ZnO is present, the resulting [Cu2O/ZnO/MWCNT] composite shows preferential hydrogen and CO2 formation due to the fact that the dehydrogenation and total oxidation pathway is more favoured compared to the binary composite. Significant morphological changes of the catalyst during the catalytic process were observed.
氧化铜纳米颗粒聚集体由 4-10nm 的 Cu2O 纳米颗粒组成,沉积在多壁碳纳米管(MWCNTs)和 ZnO/MWCNTs 上,得到二元[Cu2O/MWCNT]和三元[Cu2O/ZnO/MWCNT]复合材料。二水合二-(2-(甲氧基亚氨基)丙酰基)铜O2CCCH3NOMe·2H2O1 在 DMF 中用作纳米级 Cu2O 的单源前体。该前体在空气或氩气中分解,通过原位氧化还原反应生成 CuO2。1 的热重耦合质谱分析(TG-MS)表明,1 分解过程中形成的甲醇作为潜在的原位还原剂。二元[Cu2O/MWCNT]纳米复合材料的扫描电子显微镜(SEM)显示,随着前体用量的增加,氧化铜的负载量增加,在 MWCNTs 的外围以及较大颗粒聚集体的形成。样品的透射电子显微镜(TEM)显示,尺寸为 4-10nm 的结晶域被较大颗粒内的非晶区包围。三元[Cu2O/ZnO/MWCNT]的 SEM 和 TEM 清楚地表明,Cu2O 纳米颗粒主要沉积在 ZnO 上,而不是 MWCNTs 上。研究了[Cu2O/MWCNT]和[Cu2O/ZnO/MWCNT]二元和三元复合材料对乙醇在氧气存在下选择性部分氧化为乙醛的催化活性。当使用二元[Cu2O/MWCNT](13.8wt%Cu)作为催化剂时,在 355°C 下可获得 87%的乙醛产率(选择性 96%,转化率 91%)。当存在纳米 ZnO 时,由于脱氢和总氧化途径比二元复合材料更有利,生成的[Cu2O/ZnO/MWCNT]复合材料表现出优先形成氢气和二氧化碳。在催化过程中观察到催化剂的显著形态变化。