Suppr超能文献

基于铰接多体的RNA自适应粗粒度模拟策略。

Strategies for articulated multibody-based adaptive coarse grain simulation of RNA.

作者信息

Poursina Mohammad, Bhalerao Kishor D, Flores Samuel C, Anderson Kurt S, Laederach Alain

机构信息

Computational Dynamics Lab, Mechanical, Nuclear and Aerospace Engineering Department, Rensselaer Polytechnic Institute, Troy, New York, USA.

出版信息

Methods Enzymol. 2011;487:73-98. doi: 10.1016/B978-0-12-381270-4.00003-2.

Abstract

Efficient modeling approaches are necessary to accurately predict large-scale structural behavior of biomolecular systems like RNA (ribonucleic acid). Coarse-grained approximations of such complex systems can significantly reduce the computational costs of the simulation while maintaining sufficient fidelity to capture the biologically significant motions. However, given the coupling and nonlinearity of RNA systems (and effectively all biopolymers), it is expected that different parameters such as geometric and dynamic boundary conditions, and applied forces will affect the system's dynamic behavior. Consequently, static coarse-grained models (i.e., models for which the coarse graining is time invariant) are not always able to adequately sample the conformational space of the molecule. We introduce here the concept of adaptive coarse-grained molecular dynamics of RNA, which automatically adjusts the coarseness of the model, in an effort to more optimally increase simulation speed, while maintaining accuracy. Adaptivity requires two basic algorithmic developments: first, a set of integrators that seamlessly allow transitions between higher and lower fidelity models while preserving the laws of motion. Second, we propose and validate metrics for determining when and where more or less fidelity needs to be integrated into the model to allow sufficiently accurate dynamics simulation. Given the central role that multibody dynamics plays in the proposed framework, and the nominally large number of dynamic degrees of freedom being considered in these applications, a computationally efficient multibody method which lends itself well to adaptivity is essential to the success of this effort. A suite of divide-and-conquer algorithm (DCA)-based approaches is employed to this end. These algorithms have been selected and refined for this purpose because they offer a good combination of computational efficiency and modular structure.

摘要

高效的建模方法对于准确预测诸如RNA(核糖核酸)等生物分子系统的大规模结构行为至关重要。对这类复杂系统进行粗粒度近似可以显著降低模拟的计算成本,同时保持足够的保真度以捕捉具有生物学意义的运动。然而,考虑到RNA系统(实际上所有生物聚合物)的耦合性和非线性,预计不同的参数,如几何和动态边界条件以及施加的力,将影响系统的动态行为。因此,静态粗粒度模型(即粗粒度不随时间变化的模型)并不总是能够充分采样分子的构象空间。我们在此引入RNA自适应粗粒度分子动力学的概念,它会自动调整模型的粗粒度,以在保持准确性的同时更优化地提高模拟速度。适应性需要两个基本的算法改进:第一,一组积分器,能够在保持运动定律的同时无缝地允许在高保真度和低保真度模型之间转换。第二,我们提出并验证了用于确定何时何地需要将更多或更少的保真度纳入模型以实现足够准确的动力学模拟的指标。鉴于多体动力学在提出的框架中所起的核心作用,以及在这些应用中考虑的名义上大量的动态自由度,一种计算效率高且适合适应性的多体方法对于这项工作的成功至关重要。为此采用了一套基于分治算法(DCA)的方法。选择并改进这些算法是因为它们在计算效率和模块化结构方面提供了良好的组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3998/3026659/140b43b30e2b/nihms264385f1.jpg

相似文献

2
Coarse-graining methods for computational biology.计算生物学的粗粒化方法。
Annu Rev Biophys. 2013;42:73-93. doi: 10.1146/annurev-biophys-083012-130348. Epub 2013 Feb 28.

引用本文的文献

本文引用的文献

1
The Simbios National Center: Systems Biology in Motion.辛比奥斯国家中心:动态系统生物学
Proc IEEE Inst Electr Electron Eng. 2008 Aug 1;96(8):1266. doi: 10.1109/JPROC.2008.925454.
4
The protein folding problem.蛋白质折叠问题。
Annu Rev Biophys. 2008;37:289-316. doi: 10.1146/annurev.biophys.37.092707.153558.
9
Protein-folding dynamics: overview of molecular simulation techniques.蛋白质折叠动力学:分子模拟技术概述
Annu Rev Phys Chem. 2007;58:57-83. doi: 10.1146/annurev.physchem.58.032806.104614.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验