Suppr超能文献

基于神经网络的构象自由能预测 - 通向粗粒化模拟模型的新途径。

Neural Network Based Prediction of Conformational Free Energies - A New Route toward Coarse-Grained Simulation Models.

机构信息

Theoretical Chemistry, University of Konstanz , 78547 Konstanz, Germany.

出版信息

J Chem Theory Comput. 2017 Dec 12;13(12):6213-6221. doi: 10.1021/acs.jctc.7b00864. Epub 2017 Nov 28.

Abstract

Coarse-grained (CG) simulation models have become very popular tools to study complex molecular systems with great computational efficiency on length and time scales that are inaccessible to simulations at atomistic resolution. In so-called bottom-up coarse-graining strategies, the interactions in the CG model are devised such that an accurate representation of an atomistic sampling of configurational phase space is achieved. This means the coarse-graining methods use the underlying multibody potential of mean force (i.e., free-energy surface) derived from the atomistic simulation as parametrization target. Here, we present a new method where a neural network (NN) is used to extract high-dimensional free energy surfaces (FES) from molecular dynamics (MD) simulation trajectories. These FES are used for simulations on a CG level of resolution. The method is applied to simulating homo-oligo-peptides (oligo-glutamic-acid (oligo-glu) and oligo-aspartic-acid (oligo-asp)) of different lengths. We show that the NN not only is able to correctly describe the free-energy surface for oligomer lengths that it was trained on but also is able to predict the conformational sampling of longer chains.

摘要

粗粒化 (CG) 模拟模型已成为非常流行的工具,可用于研究具有复杂分子系统,在长度和时间尺度上具有很高的计算效率,而这些是原子分辨率模拟无法达到的。在所谓的自下而上的粗粒化策略中,CG 模型中的相互作用被设计为实现对原子采样构象相空间的精确表示。这意味着粗粒化方法使用源自原子模拟的潜在多体平均力势(即自由能表面)作为参数化目标。在这里,我们提出了一种新方法,该方法使用神经网络 (NN) 从分子动力学 (MD) 模拟轨迹中提取高维自由能表面 (FES)。这些 FES 用于 CG 分辨率级别的模拟。该方法应用于模拟不同长度的同寡肽 (寡谷氨酸 (oligo-glu) 和寡天冬氨酸 (oligo-asp))。我们表明,NN 不仅能够正确描述它所训练的低聚物长度的自由能表面,还能够预测更长链的构象采样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验