Flores Samuel C, Wan Yaqi, Russell Rick, Altman Russ B
Bioengineering Department, Stanford University, Clark Center S231, 318 Campus Drive, Stanford, California 94305-5444, USA.
Pac Symp Biocomput. 2010:216-27. doi: 10.1142/9789814295291_0024.
Despite the importance of 3D structure to understand the myriad functions of RNAs in cells, most RNA molecules remain out of reach of crystallographic and NMR methods. However, certain structural information such as base pairing and some tertiary contacts can be determined readily for many RNAs by bioinformatics or relatively low cost experiments. Further, because RNA structure is highly modular, it is possible to deduce local 3D structure from the solved structures of evolutionarily related RNAs or even unrelated RNAs that share the same module. RNABuilder is a software package that generates model RNA structures by treating the kinematics and forces at separate, multiple levels of resolution. Kinematically, bonds in bases, certain stretches of residues, and some entire molecules are rigid while other bonds remain flexible. Forces act on the rigid bases and selected individual atoms. Here we use RNABuilder to predict the structure of the 200-nucleotide Azoarcus group I intron by homology modeling against fragments of the distantly-related Twort and Tetrahymena group I introns and by incorporating base pairing forces where necessary. In the absence of any information from the solved Azoarcus intron crystal structure, the model accurately depicts the global topology, secondary and tertiary connections, and gives an overall RMSD value of 4.6 A relative to the crystal structure. The accuracy of the model is even higher in the intron core (RMSD = 3.5 A), whereas deviations are modestly larger for peripheral regions that differ more substantially between the different introns. These results lay the groundwork for using this approach for larger and more diverse group I introns, as well for still larger RNAs and RNA-protein complexes such as group II introns and the ribosomal subunits.
尽管三维结构对于理解RNA在细胞中的众多功能至关重要,但大多数RNA分子仍无法通过晶体学和核磁共振方法进行研究。然而,通过生物信息学或成本相对较低的实验,可以轻松确定许多RNA的某些结构信息,如碱基配对和一些三级相互作用。此外,由于RNA结构具有高度模块化,因此可以从进化相关RNA甚至共享相同模块的无关RNA的已解析结构中推断出局部三维结构。RNABuilder是一个软件包,通过在单独的多个分辨率级别上处理运动学和力来生成模型RNA结构。在运动学上,碱基中的键、某些残基片段和一些整个分子是刚性的,而其他键则保持灵活。力作用于刚性碱基和选定的单个原子。在这里,我们使用RNABuilder通过与远缘相关的Twort和嗜热栖热菌I组内含子片段进行同源建模,并在必要时纳入碱基配对力,来预测200个核苷酸的偶氮螺菌I组内含子的结构。在没有来自已解析的偶氮螺菌内含子晶体结构的任何信息的情况下,该模型准确地描绘了全局拓扑、二级和三级连接,并且相对于晶体结构给出了4.6埃的总体均方根偏差值。该模型在内含子核心的准确性更高(均方根偏差 = 3.�埃),而对于不同内含子之间差异更大的外围区域,偏差则略大。这些结果为将这种方法用于更大、更多样化的I组内含子以及更大的RNA和RNA-蛋白质复合物(如II组内含子和核糖体亚基)奠定了基础。