Marin-Sanguino Alberto, Gupta Shailendra K, Voit Eberhard O, Vera Julio
Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
Methods Enzymol. 2011;487:319-69. doi: 10.1016/B978-0-12-381270-4.00011-1.
In the near future, computational tools and methods based on the mathematical modeling of biomedically relevant networks and pathways will be necessary for the design of therapeutic strategies that fight complex multifactorial diseases. Beyond the use of pharmacokinetic and pharmacodynamic approaches, we propose here the use of dynamic modeling as a tool for describing and analyzing the structure and responses of signaling, genetic and metabolic networks involved in such diseases. Specifically, we discuss the design and construction of meaningful models of biochemical networks, as well as tools, concepts, and strategies for using these models in the search of potential drug targets. We describe three different families of computational tools: predictive model simulations as tools for designing optimal drug profiles and doses; sensitivity analysis as a method to detect key interactions that affect critical outcomes and other characteristics of the network; and other tools integrating mathematical modeling with advanced computation and optimization for detecting potential drug targets. Furthermore, we show how potential drug targets detected with these approaches can be used in a computer-aided context to design or select new drug molecules. All concepts are illustrated with simplified examples and with actual case studies extracted from the recent literature.
在不久的将来,基于生物医学相关网络和通路数学建模的计算工具和方法,对于对抗复杂多因素疾病的治疗策略设计将是必不可少的。除了使用药代动力学和药效学方法外,我们在此提议使用动态建模作为一种工具,来描述和分析此类疾病中涉及的信号传导、遗传和代谢网络的结构及反应。具体而言,我们讨论了生化网络有意义模型的设计与构建,以及在寻找潜在药物靶点时使用这些模型的工具、概念和策略。我们描述了三种不同类型的计算工具:预测模型模拟作为设计最佳药物轮廓和剂量的工具;敏感性分析作为检测影响关键结果和网络其他特征的关键相互作用的方法;以及将数学建模与先进计算和优化相结合以检测潜在药物靶点的其他工具。此外,我们展示了如何在计算机辅助环境中使用通过这些方法检测到的潜在药物靶点来设计或选择新的药物分子。所有概念均通过简化示例以及从近期文献中提取的实际案例研究进行说明。