Chow Carson C, Ong Karen M, Dougherty Edward J, Simons S Stoney
Laboratory of Biological Modeling, NIDDK/CEB, National Institutes of Health, Bethesda, Maryland, USA.
Methods Enzymol. 2011;487:465-83. doi: 10.1016/B978-0-12-381270-4.00016-0.
The steady state dose-response curve of ligand-mediated gene induction usually appears to precisely follow a first-order Hill equation (Hill coefficient equal to 1). Additionally, various cofactors/reagents can affect both the potency and the maximum activity of gene induction in a gene-specific manner. Recently, we have developed a general theory for which an unspecified sequence of steps or reactions yields a first-order Hill dose-response curve (FHDC) for plots of the final product versus initial agonist concentration. The theory requires only that individual reactions "dissociate" from the downstream reactions leading to the final product, which implies that intermediate complexes are weakly bound or exist only transiently. We show how the theory can be utilized to make predictions of previously unidentified mechanisms and the site of action of cofactors/reagents. The theory is general and can be applied to any biochemical reaction that has a FHDC.
配体介导的基因诱导的稳态剂量-反应曲线通常似乎精确地遵循一阶希尔方程(希尔系数等于1)。此外,各种辅助因子/试剂可以以基因特异性方式影响基因诱导的效力和最大活性。最近,我们已经发展了一种通用理论,即一个未指定的步骤或反应序列会产生最终产物与初始激动剂浓度关系图的一阶希尔剂量-反应曲线(FHDC)。该理论仅要求各个反应与导致最终产物的下游反应“解离”,这意味着中间复合物是弱结合的或仅短暂存在。我们展示了如何利用该理论对先前未确定的机制以及辅助因子/试剂的作用位点进行预测。该理论是通用的,可应用于任何具有FHDC的生化反应。