Suppr超能文献

心力衰竭患者的住院流行情况:危险因素、风险预测、知识空白及未来方向。

Hospitalization epidemic in patients with heart failure: risk factors, risk prediction, knowledge gaps, and future directions.

机构信息

Emory University, Atlanta, Georgia, USA.

出版信息

J Card Fail. 2011 Jan;17(1):54-75. doi: 10.1016/j.cardfail.2010.08.010.

Abstract

Patients with heart failure (HF) are hospitalized over a million times annually in the United States. Hospitalization marks a fundamental change in the natural history of HF, leading to frequent subsequent rehospitalizations and a significantly higher mortality compared with nonhospitalized patients. Three-fourths of all HF hospitalizations are due to exacerbation of symptoms in patients with known HF. One-half of hospitalized HF patients experience readmission within 6 months. Preventing HF hospitalization and rehospitalization is important to improve patient outcomes and curb health care costs. To implement cost-effective strategies to contain the HF hospitalization epidemic, optimal schemes to identify high-risk individuals are needed. In this review, we describe the risk factors that have been associated with hospitalization risk in HF and the various multimarker risk prediction schemes developed to predict HF rehospitalization. We comment on areas that represent gaps in our knowledge or difficulties in interpretation of the current literature, representing opportunities for future research. We also discuss issues with using HF readmission rate as a quality indicator.

摘要

美国每年有超过 100 万名心力衰竭(HF)患者住院。住院标志着 HF 自然病程的根本改变,与未住院患者相比,HF 患者随后经常再次住院,死亡率显著更高。所有 HF 住院治疗的四分之三是由于已知 HF 患者的症状恶化。一半的住院 HF 患者在 6 个月内再次入院。预防 HF 住院和再住院对于改善患者预后和控制医疗保健成本非常重要。为了实施具有成本效益的策略来控制 HF 住院治疗的流行,需要确定高风险个体的最佳方案。在这篇综述中,我们描述了与 HF 住院风险相关的危险因素,以及为预测 HF 再住院而开发的各种多标记物风险预测方案。我们评论了我们知识中的空白或当前文献解释困难的领域,这代表了未来研究的机会。我们还讨论了将 HF 再入院率用作质量指标的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验