Suppr超能文献

通过置信传播发现细胞信号传导中未被检测到的蛋白质关联。

Finding undetected protein associations in cell signaling by belief propagation.

机构信息

Laboratoire de Biometrie et Biologie Evolutive, Centre National de la Recherche Scientifique, Unite Mixte de Recherche 5558, Université Lyon 1, Villeurbanne, France.

出版信息

Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):882-7. doi: 10.1073/pnas.1004751108. Epub 2010 Dec 27.

Abstract

External information propagates in the cell mainly through signaling cascades and transcriptional activation, allowing it to react to a wide spectrum of environmental changes. High-throughput experiments identify numerous molecular components of such cascades that may, however, interact through unknown partners. Some of them may be detected using data coming from the integration of a protein-protein interaction network and mRNA expression profiles. This inference problem can be mapped onto the problem of finding appropriate optimal connected subgraphs of a network defined by these datasets. The optimization procedure turns out to be computationally intractable in general. Here we present a new distributed algorithm for this task, inspired from statistical physics, and apply this scheme to alpha factor and drug perturbations data in yeast. We identify the role of the COS8 protein, a member of a gene family of previously unknown function, and validate the results by genetic experiments. The algorithm we present is specially suited for very large datasets, can run in parallel, and can be adapted to other problems in systems biology. On renowned benchmarks it outperforms other algorithms in the field.

摘要

外部信息主要通过信号级联和转录激活在细胞中传播,使细胞能够对广泛的环境变化做出反应。高通量实验鉴定出了许多这样的级联的分子组成部分,但它们可能通过未知的伙伴相互作用。其中一些可以通过整合蛋白质-蛋白质相互作用网络和 mRNA 表达谱的数据来检测。这个推理问题可以映射到通过这些数据集定义的网络中找到合适的最优连接子图的问题上。一般来说,这个优化过程在计算上是难以处理的。在这里,我们从统计物理中得到启发,提出了一种新的分布式算法,并将该方案应用于酵母中的α因子和药物扰动数据。我们确定了 COS8 蛋白的作用,该蛋白是一个先前未知功能的基因家族的成员,并通过遗传实验验证了结果。我们提出的算法特别适用于非常大的数据集,可以并行运行,并可以应用于系统生物学中的其他问题。在著名的基准测试中,它优于该领域的其他算法。

相似文献

5
Multiscale characterization of signaling network dynamics through features.通过特征对信号网络动力学进行多尺度表征。
Stat Appl Genet Mol Biol. 2011 Nov 20;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1657/1544-6115.1657.xml. doi: 10.2202/1544-6115.1657.
6
Predicting protein functions with message passing algorithms.使用消息传递算法预测蛋白质功能。
Bioinformatics. 2005 Jan 15;21(2):239-47. doi: 10.1093/bioinformatics/bth491. Epub 2004 Sep 17.
10

引用本文的文献

2
Assessing network-based methods in the context of system toxicology.在系统毒理学背景下评估基于网络的方法。
Front Pharmacol. 2023 Jul 12;14:1225697. doi: 10.3389/fphar.2023.1225697. eCollection 2023.
5
Construction and contextualization approaches for protein-protein interaction networks.蛋白质-蛋白质相互作用网络的构建与情境化方法。
Comput Struct Biotechnol J. 2022 Jun 18;20:3280-3290. doi: 10.1016/j.csbj.2022.06.040. eCollection 2022.
10
PRODIGY: personalized prioritization of driver genes.PRODIGY:个性化的驱动基因优先级排序。
Bioinformatics. 2020 Mar 1;36(6):1831-1839. doi: 10.1093/bioinformatics/btz815.

本文引用的文献

5
mTOR-dependent signalling in Alzheimer's disease.阿尔茨海默病中mTOR依赖性信号传导
J Cell Mol Med. 2008 Dec;12(6B):2525-32. doi: 10.1111/j.1582-4934.2008.00509.x.
6
Probing pathways periodically.定期探索途径。
Sci Signal. 2008 Oct 21;1(42):pe47. doi: 10.1126/scisignal.142pe47.
7
Statistical mechanics of steiner trees.斯坦纳树的统计力学
Phys Rev Lett. 2008 Jul 18;101(3):037208. doi: 10.1103/PhysRevLett.101.037208.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验