Suppr超能文献

识别个体化风险子通路可揭示基于多组学数据的泛癌分子分类。

Identifying individualized risk subpathways reveals pan-cancer molecular classification based on multi-omics data.

作者信息

Xu Yanjun, Wang Jingwen, Li Feng, Zhang Chunlong, Zheng Xuan, Cao Yang, Shang Desi, Hu Congxue, Xu Yingqi, Mi Wanqi, Li Xia, Cao Yan, Zhang Yunpeng

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.

Harbin Medical University Cancer Hospital, Harbin, China.

出版信息

Comput Struct Biotechnol J. 2022 Jan 22;20:838-849. doi: 10.1016/j.csbj.2022.01.022. eCollection 2022.

Abstract

Cancer is a highly heterogeneous disease with different functional disorders among individuals. The initiation and progression of cancer is usually related to dysregulation of local regions within pathways. Identification of individualized risk pathways is crucial for revealing the mechanisms of tumorigenesis and heterogeneity. However, approach that focused on mining patient-specific risk subpathway regions is still lacking. Here, we developed an individualized cancer risk subpathway identification method that was referred as InCRiS by integrating multi-omics data. Then, the method was applied to nearly 3000 samples across 9 TCGA cancer types and its robustness and reliability were evaluated. Dissecting dysregulated subpathways in these tumor samples revealed several key regions which may play oncogenic roles in cancer. The construction of risk subpathway dysregulation profile of pan-cancers revealed 11 pan-cancer molecular classification (InCRiS subtypes) with significantly different clinical outcomes. Moreover, subpathway regions that tend to be disordered in individuals of specific subtypes were examined for understanding the pathogenesis of tumor and some key genes such as CTNNB1, EP300 and PRKDC were nominated in different subtypes. In summary, the proposed method and resulting data presented useful resources to study the mechanism of tumor heterogeneity and to discovery novel therapeutic targets for precise treatment of cancer.

摘要

癌症是一种高度异质性疾病,个体之间存在不同的功能紊乱。癌症的发生和发展通常与信号通路内局部区域的失调有关。识别个体化风险通路对于揭示肿瘤发生机制和异质性至关重要。然而,目前仍缺乏专注于挖掘患者特异性风险子通路区域的方法。在此,我们开发了一种个体化癌症风险子通路识别方法,通过整合多组学数据将其命名为InCRiS。然后,将该方法应用于9种TCGA癌症类型的近3000个样本,并评估了其稳健性和可靠性。剖析这些肿瘤样本中失调的子通路揭示了几个可能在癌症中发挥致癌作用的关键区域。泛癌风险子通路失调图谱的构建揭示了11种具有显著不同临床结局的泛癌分子分类(InCRiS亚型)。此外,研究特定亚型个体中倾向于失调的子通路区域以了解肿瘤发病机制,并在不同亚型中提名了一些关键基因,如CTNNB1、EP300和PRKDC。总之,所提出的方法和所得数据为研究肿瘤异质性机制和发现癌症精准治疗的新治疗靶点提供了有用资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/242e/8842010/9d7d21990a92/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验