Suppr超能文献

半月板细胞与细胞外基质分子的相互作用:迈向组织工程半月板的生成。

Interactions of meniscal cells with extracellular matrix molecules: towards the generation of tissue engineered menisci.

机构信息

Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, Queensland, Australia.

出版信息

Cell Adh Migr. 2011 May-Jun;5(3):220-6. doi: 10.4161/cam.5.3.14463. Epub 2011 May 1.

Abstract

Menisci are one of the most commonly injured parts of the knee. Conventional surgical interventions are often associated with a long-term increased risk of osteoarthritis. Meniscal tissue engineering utilizes natural or synthetic matrices as a scaffold to guide tissue repair or regeneration in three dimensions. Studies have shown that a diverse cellular response can be triggered depending on the composition of the surrounding extracellular matrix (ECM) components. As such, attempts have been made to replace or repair meniscus defects using tissue grafts or reconstituted ECM components prepared from a multitude of tissues. This commentary summarizes the most recent data on the response of meniscal cells to ECM components, both in vivo and in vitro, and focuses on their potential roles in meniscal repair and regeneration. We also discuss our recent investigations into the interactions of meniscal cells and a self assembled biomimetic surface composed of meniscal ECM molecules. The biological effects conferred by the biomimetic surface, in terms of cell adhesion, proliferation, gene expression profiles and matrix synthesis, were evaluated. Finally, some suggested directions for future research in this field are outlined.

摘要

半月板是膝关节最常受伤的部位之一。传统的手术干预往往伴随着长期增加骨关节炎的风险。半月板组织工程利用天然或合成基质作为支架,在三维空间引导组织修复或再生。研究表明,根据周围细胞外基质 (ECM) 成分的组成,可以触发不同的细胞反应。因此,人们尝试使用组织移植物或从多种组织制备的重组 ECM 成分来替代或修复半月板缺损。本评论总结了半月板细胞对 ECM 成分的最新体内和体外反应数据,并重点讨论了它们在半月板修复和再生中的潜在作用。我们还讨论了我们最近对半月板细胞与由半月板 ECM 分子组成的自组装仿生表面相互作用的研究。评估了仿生表面在细胞黏附、增殖、基因表达谱和基质合成方面赋予的生物学效应。最后,概述了该领域未来研究的一些建议方向。

相似文献

1
Interactions of meniscal cells with extracellular matrix molecules: towards the generation of tissue engineered menisci.
Cell Adh Migr. 2011 May-Jun;5(3):220-6. doi: 10.4161/cam.5.3.14463. Epub 2011 May 1.
6
Development and Characterization of Acellular Extracellular Matrix Scaffolds from Porcine Menisci for Use in Cartilage Tissue Engineering.
Tissue Eng Part C Methods. 2015 Sep;21(9):971-86. doi: 10.1089/ten.TEC.2015.0036. Epub 2015 Jun 10.
8
Anterior Cruciate Ligament Transection-Induced Cellular and Extracellular Events in Menisci: Implications for Osteoarthritis.
Am J Sports Med. 2018 Apr;46(5):1185-1198. doi: 10.1177/0363546518756087. Epub 2018 Mar 7.

引用本文的文献

1
Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering.
Mater Today Bio. 2023 Nov 17;23:100870. doi: 10.1016/j.mtbio.2023.100870. eCollection 2023 Dec.
2
Recent Advances in Therapeutic Modalities Against Breast Cancer-Related Lymphedema: Future Epigenetic Landscape.
Lymphat Res Biol. 2023 Dec;21(6):536-548. doi: 10.1089/lrb.2022.0016. Epub 2023 Jun 2.
3
Applications and prospects of different functional hydrogels in meniscus repair.
Front Bioeng Biotechnol. 2022 Dec 8;10:1082499. doi: 10.3389/fbioe.2022.1082499. eCollection 2022.
4
Meniscus Matrix Structural and Biomechanical Evaluation: Age-Dependent Properties in a Swine Model.
Bioengineering (Basel). 2022 Mar 15;9(3):117. doi: 10.3390/bioengineering9030117.
5
Meniscus regeneration by 3D printing technologies: Current advances and future perspectives.
J Tissue Eng. 2022 Jan 25;13:20417314211065860. doi: 10.1177/20417314211065860. eCollection 2022 Jan-Dec.
7
Meniscal Regenerative Scaffolds Based on Biopolymers and Polymers: Recent Status and Applications.
Front Cell Dev Biol. 2021 Jul 13;9:661802. doi: 10.3389/fcell.2021.661802. eCollection 2021.
8
Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective.
Clin Sports Med. 2020 Jan;39(1):125-163. doi: 10.1016/j.csm.2019.08.003.
9
Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold.
Bone Joint Res. 2019 Mar 2;8(2):101-106. doi: 10.1302/2046-3758.82.BJR-2018-0134.R1. eCollection 2019 Feb.

本文引用的文献

2
Additive and synergistic effects of bFGF and hypoxia on leporine meniscus cell-seeded PLLA scaffolds.
J Tissue Eng Regen Med. 2010 Feb;4(2):115-22. doi: 10.1002/term.221.
3
The extracellular matrix in development and morphogenesis: a dynamic view.
Dev Biol. 2010 May 1;341(1):126-40. doi: 10.1016/j.ydbio.2009.10.026. Epub 2009 Oct 23.
4
Long-term clinical outcome of open meniscal allograft transplantation.
Am J Sports Med. 2009 Nov;37(11):2134-9. doi: 10.1177/0363546509336725. Epub 2009 Jun 19.
5
Effects of co-cultures of meniscus cells and articular chondrocytes on PLLA scaffolds.
Biotechnol Bioeng. 2009 Jul 1;103(4):808-16. doi: 10.1002/bit.22301.
6
Meniscus structure in human, sheep, and rabbit for animal models of meniscus repair.
J Orthop Res. 2009 Sep;27(9):1197-203. doi: 10.1002/jor.20869.
7
Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial.
J Bone Joint Surg Am. 2008 Jul;90(7):1413-26. doi: 10.2106/JBJS.G.00656.
8
Different behavior of meniscal cells in collagen II/I,III and Hyaff-11 scaffolds in vitro.
Tissue Eng Part A. 2008 Aug;14(8):1295-304. doi: 10.1089/ten.tea.2007.0341.
9
Extracellular matrix dynamics in development and regenerative medicine.
J Cell Sci. 2008 Feb 1;121(Pt 3):255-64. doi: 10.1242/jcs.006064.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验