Li Hao, Li Pinxue, Yang Zhen, Gao Cangjian, Fu Liwei, Liao Zhiyao, Zhao Tianyuan, Cao Fuyang, Chen Wei, Peng Yu, Yuan Zhiguo, Sui Xiang, Liu Shuyun, Guo Quanyi
The First Medical Center, Chinese PLA General Hospital, Institute of Orthopedics, Beijing, China.
Beijing Key Lab of Regenerative Medicine in Orthopedics, Beijing, China.
Front Cell Dev Biol. 2021 Jul 13;9:661802. doi: 10.3389/fcell.2021.661802. eCollection 2021.
Knee menisci are structurally complex components that preserve appropriate biomechanics of the knee. Meniscal tissue is susceptible to injury and cannot heal spontaneously from most pathologies, especially considering the limited regenerative capacity of the inner avascular region. Conventional clinical treatments span from conservative therapy to meniscus implantation, all with limitations. There have been advances in meniscal tissue engineering and regenerative medicine in terms of potential combinations of polymeric biomaterials, endogenous cells and stimuli, resulting in innovative strategies. Recently, polymeric scaffolds have provided researchers with a powerful instrument to rationally support the requirements for meniscal tissue regeneration, ranging from an ideal architecture to biocompatibility and bioactivity. However, multiple challenges involving the anisotropic structure, sophisticated regenerative process, and challenging healing environment of the meniscus still create barriers to clinical application. Advances in scaffold manufacturing technology, temporal regulation of molecular signaling and investigation of host immunoresponses to scaffolds in tissue engineering provide alternative strategies, and studies have shed light on this field. Accordingly, this review aims to summarize the current polymers used to fabricate meniscal scaffolds and their applications and to evaluate their potential utility in meniscal tissue engineering. Recent progress on combinations of two or more types of polymers is described, with a focus on advanced strategies associated with technologies and immune compatibility and tunability. Finally, we discuss the current challenges and future prospects for regenerating injured meniscal tissues.
膝关节半月板是维持膝关节适当生物力学的结构复杂的组成部分。半月板组织易受损伤,并且在大多数病变情况下无法自发愈合,尤其是考虑到内部无血管区域有限的再生能力。传统的临床治疗方法从保守治疗到半月板植入,各有其局限性。在聚合物生物材料、内源性细胞和刺激因素的潜在组合方面,半月板组织工程和再生医学取得了进展,从而产生了创新策略。最近,聚合物支架为研究人员提供了一种强大的工具,能够合理地满足半月板组织再生的要求,从理想的结构到生物相容性和生物活性。然而,半月板的各向异性结构、复杂的再生过程以及具有挑战性的愈合环境等多重挑战仍然为临床应用带来障碍。支架制造技术的进步、分子信号的时间调控以及组织工程中宿主对支架的免疫反应研究提供了替代策略,相关研究也为该领域带来了启示。因此,本综述旨在总结目前用于制造半月板支架的聚合物及其应用,并评估它们在半月板组织工程中的潜在效用。本文描述了两种或更多种聚合物组合的最新进展,重点关注与技术、免疫相容性和可调性相关的先进策略。最后,我们讨论了再生受损半月板组织目前面临的挑战和未来前景。