Filardo G, Petretta M, Cavallo C, Roseti L, Durante S, Albisinni U, Grigolo B
Applied and Translational Research (ATR) Center, IRCCS - Istituto Ortopedico Rizzoli, Bologna, Italy.
Laboratory RAMSES, Laboratorio RAMSES, Rizzoli Research, Innovation & Technology Department (RIT), IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; RegenHu Ltd, Villaz-St-Pierre, Switzerland.
Bone Joint Res. 2019 Mar 2;8(2):101-106. doi: 10.1302/2046-3758.82.BJR-2018-0134.R1. eCollection 2019 Feb.
Meniscal injuries are often associated with an active lifestyle. The damage of meniscal tissue puts young patients at higher risk of undergoing meniscal surgery and, therefore, at higher risk of osteoarthritis. In this study, we undertook proof-of-concept research to develop a cellularized human meniscus by using 3D bioprinting technology.
A 3D model of bioengineered medial meniscus tissue was created, based on MRI scans of a human volunteer. The Digital Imaging and Communications in Medicine (DICOM) data from these MRI scans were processed using dedicated software, in order to obtain an STL model of the structure. The chosen 3D Discovery printing tool was a microvalve-based inkjet printhead. Primary mesenchymal stem cells (MSCs) were isolated from bone marrow and embedded in a collagen-based bio-ink before printing. LIVE/DEAD assay was performed on realized cell-laden constructs carrying MSCs in order to evaluate cell distribution and viability.
This study involved the realization of a human cell-laden collagen meniscus using 3D bioprinting. The meniscus prototype showed the biological potential of this technology to provide an anatomically shaped, patient-specific construct with viable cells on a biocompatible material.
This paper reports the preliminary findings of the production of a custom-made, cell-laden, collagen-based human meniscus. The prototype described could act as the starting point for future developments of this collagen-based, tissue-engineered structure, which could aid the optimization of implants designed to replace damaged menisci.: G. Filardo, M. Petretta, C. Cavallo, L. Roseti, S. Durante, U. Albisinni, B. Grigolo. Patient-specific meniscus prototype based on 3D bioprinting of human cell-laden scaffold. 2019;8:101-106. DOI: 10.1302/2046-3758.82.BJR-2018-0134.R1.
半月板损伤常与积极的生活方式相关。半月板组织的损伤使年轻患者接受半月板手术的风险更高,因此患骨关节炎的风险也更高。在本研究中,我们开展了概念验证研究,以利用3D生物打印技术开发细胞化的人类半月板。
基于一名人类志愿者的MRI扫描创建了生物工程内侧半月板组织的3D模型。使用专用软件处理这些MRI扫描的医学数字成像和通信(DICOM)数据,以获得该结构的STL模型。选用的3D Discovery打印工具是基于微阀的喷墨打印头。从骨髓中分离出原代间充质干细胞(MSC),并在打印前将其嵌入基于胶原蛋白的生物墨水中。对实现的载有MSC的构建体进行活/死检测,以评估细胞分布和活力。
本研究涉及利用3D生物打印实现载有人类细胞的胶原蛋白半月板。半月板原型显示了该技术的生物学潜力,能够在生物相容性材料上提供具有可行细胞的解剖形状、患者特异性构建体。
本文报告了定制的、载有细胞的、基于胶原蛋白的人类半月板生产的初步结果。所描述的原型可作为这种基于胶原蛋白的组织工程结构未来发展的起点,这可能有助于优化旨在替代受损半月板的植入物。:G. 菲拉尔朵、M. 彼得雷塔、C. 卡瓦洛、L. 罗塞蒂、S. 杜兰特、U. 阿尔比西尼、B. 格里戈洛。基于载有人类细胞支架的3D生物打印的患者特异性半月板原型。2019年;8:101 - 106。DOI:10.1302/2046 - 3758.82.BJR - 2018 - 0134.R1 。