Suppr超能文献

研究 C57BL6 小鼠的 3D 角前庭眼反射的特征。

Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice.

机构信息

Neuroscience Research Australia and the University of New South Wales, Sydney, Australia.

出版信息

Exp Brain Res. 2011 May;210(3-4):489-501. doi: 10.1007/s00221-010-2521-y. Epub 2010 Dec 29.

Abstract

We characterized the three-dimensional angular vestibulo-ocular reflex (3D aVOR) of adult C57BL6 mice during static tilt testing, sinusoidal, and high-acceleration rotations and compared it with that of another lateral-eyed mammal with afoveate retinae (chinchilla) and two primate species with forward eye orientation and retinal foveae (human and squirrel monkey). Noting that visual acuity in mice is poor compared to chinchillas and even worse compared to primates, we hypothesized that the mouse 3D aVOR would be relatively low in gain (eye-velocity/head-velocity) compared to other species and would fall off for combinations of head rotation velocity and frequency for which peak-to-peak position changes fall below the minimum visual angle resolvable by mice. We also predicted that as in chinchilla, the mouse 3D aVOR would be more isotropic (eye/head velocity gain independent of head rotation axis) and better aligned with the axis of head rotation than the 3D aVOR of primates. In 12 adult C57BL6 mice, binocular 3D eye movements were measured in darkness during whole-body static tilts, 20-100°/s whole-body sinusoidal rotations (0.02-10 Hz) and acceleration steps of 3,000°/s² to a 150°/s plateau (dominant spectral content 8-12 Hz). Our results show that the mouse has a robust static tilt counter-roll response gain of 0.35 (eye-position Δ/head-position Δ) and mid-frequency aVOR gain (0.6-0.8), but relatively low aVOR gain for high-frequency sinusoidal head rotations and for steps of head rotation acceleration (~0.5). Due to comparatively poor static visual acuity in the mouse, a perfectly compensatory 3D aVOR would confer relatively little benefit during high-frequency, low-amplitude movements. Therefore, our data suggest that the adaptive drive for maintaining a compensatory 3D aVOR depends on the static visual acuity in different species. Like chinchillas, mice have a much more nearly isotropic 3D aVOR than do the primates for which comparable data are available. Relatively greater isotropy in lateral-eyed species without retinal foveae (e.g., mice and chinchillas in the present study) compared to forward-eyed species with retinal foveae (e.g., squirrel monkeys and humans) suggests that the parallel resting optic axes and/or radially symmetric retinal foveae of primates underlie their characteristically low 3D aVOR gain for roll head rotations.

摘要

我们描述了成年 C57BL6 小鼠在静态倾斜测试、正弦和高加速度旋转期间的三维角前庭眼反射(3D aVOR),并将其与另一种具有凹形视网膜的外侧眼哺乳动物(南美栗鼠)和两种具有向前眼定向和视网膜中央凹的灵长类物种(人 和松鼠猴)进行了比较。我们注意到,与南美栗鼠相比,小鼠的视力较差,甚至比灵长类动物更差,因此我们假设与其他物种相比,小鼠的 3D aVOR 增益(眼速/头速)相对较低,并且对于头旋转速度和频率的组合,峰值到峰值位置变化低于小鼠可分辨的最小视角。我们还预测,与南美栗鼠一样,小鼠的 3D aVOR 将更加各向同性(与头旋转轴无关的眼/头速度增益),并且与灵长类动物的 3D aVOR 相比,与头旋转轴的对齐更好。在 12 只成年 C57BL6 小鼠中,在黑暗中测量了整个身体静态倾斜、20-100°/s 整个身体正弦旋转(0.02-10 Hz)和 3000°/s² 的加速度步长到 150°/s 平台(主要频谱内容为 8-12 Hz)期间的双眼 3D 眼球运动。我们的结果表明,小鼠具有强大的静态倾斜反滚响应增益约为 0.35(眼位置 Δ/头位置 Δ)和中频 aVOR 增益(约 0.6-0.8),但对于高频正弦头旋转和头旋转加速度的阶跃,aVOR 增益相对较低(约 0.5)。由于小鼠的静态视觉敏锐度相对较差,因此在高频、低幅度运动中,完美的补偿性 3D aVOR 几乎没有带来好处。因此,我们的数据表明,维持补偿性 3D aVOR 的适应驱动力取决于不同物种的静态视觉敏锐度。与具有可比数据的灵长类动物相比,像南美栗鼠一样,小鼠具有更接近各向同性的 3D aVOR。在没有视网膜中央凹的外侧眼物种(例如,本研究中的小鼠和南美栗鼠)中,与具有视网膜中央凹的向前眼物种(例如,松鼠猴和人类)相比,相对更大的各向同性表明,灵长类动物的平行静止视轴和/或径向对称的视网膜中央凹是其特征性低 3D aVOR 滚头旋转增益的基础。

相似文献

1
Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice.
Exp Brain Res. 2011 May;210(3-4):489-501. doi: 10.1007/s00221-010-2521-y. Epub 2010 Dec 29.
2
Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision.
J Physiol. 2010 Oct 15;588(Pt 20):3855-67. doi: 10.1113/jphysiol.2010.196287. Epub 2010 Aug 19.
4
7
The under-compensatory roll aVOR does not affect dynamic visual acuity.
J Assoc Res Otolaryngol. 2012 Aug;13(4):517-25. doi: 10.1007/s10162-012-0330-7. Epub 2012 Apr 24.
9
The primate vestibulo-ocular reflex during combined linear and angular head motion.
Exp Brain Res. 1991;87(1):75-84. doi: 10.1007/BF00228508.
10
Human 3-D aVOR with and without otolith stimulation.
Exp Brain Res. 2005 Mar;161(3):358-67. doi: 10.1007/s00221-004-2080-1. Epub 2004 Oct 14.

引用本文的文献

3
Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions.
Front Neurol. 2022 Apr 4;13:816534. doi: 10.3389/fneur.2022.816534. eCollection 2022.
4
Vestibulo-Ocular Reflex Short-Term Adaptation Is Halved After Compensation for Unilateral Labyrinthectomy.
J Assoc Res Otolaryngol. 2022 Jun;23(3):457-466. doi: 10.1007/s10162-022-00844-4. Epub 2022 Mar 21.
5
Two Distinct Types of Eye-Head Coupling in Freely Moving Mice.
Curr Biol. 2020 Jun 8;30(11):2116-2130.e6. doi: 10.1016/j.cub.2020.04.042. Epub 2020 May 14.
6
Mouse Magnetic-field Nystagmus in Strong Static Magnetic Fields Is Dependent on the Presence of Nox3.
Otol Neurotol. 2018 Dec;39(10):e1150-e1159. doi: 10.1097/MAO.0000000000002024.
7
Core Body Temperature Effects on the Mouse Vestibulo-ocular Reflex.
J Assoc Res Otolaryngol. 2017 Dec;18(6):827-835. doi: 10.1007/s10162-017-0639-3. Epub 2017 Jul 28.
8
The mammalian efferent vestibular system plays a crucial role in vestibulo-ocular reflex compensation after unilateral labyrinthectomy.
J Neurophysiol. 2017 Apr 1;117(4):1553-1568. doi: 10.1152/jn.01049.2015. Epub 2017 Jan 11.
9
High-Speed Video-Oculography for Measuring Three-Dimensional Rotation Vectors of Eye Movements in Mice.
PLoS One. 2016 Mar 29;11(3):e0152307. doi: 10.1371/journal.pone.0152307. eCollection 2016.

本文引用的文献

1
Adaptation of the vestibulo-ocular reflex for forward-eyed foveate vision.
J Physiol. 2010 Oct 15;588(Pt 20):3855-67. doi: 10.1113/jphysiol.2010.196287. Epub 2010 Aug 19.
2
Distribution of optokinetic sensitivity across the retina of mice in relation to eye orientation.
Neuroscience. 2010 Jun 16;168(1):200-8. doi: 10.1016/j.neuroscience.2010.03.025. Epub 2010 Mar 18.
3
Initiation of the optokinetic response (OKR) in mice.
J Vis. 2010 Jan 29;10(1):13.1-17. doi: 10.1167/10.1.13.
4
Three-dimensional optokinetic eye movements in the C57BL/6J mouse.
Invest Ophthalmol Vis Sci. 2010 Jan;51(1):623-30. doi: 10.1167/iovs.09-4072. Epub 2009 Aug 20.
5
Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy.
J Neurophysiol. 2008 Aug;100(2):945-58. doi: 10.1152/jn.90319.2008. Epub 2008 May 28.
6
Eye orientation during static tilts and its relationship to spontaneous head pitch in the laboratory mouse.
Brain Res. 2008 Feb 8;1193:57-66. doi: 10.1016/j.brainres.2007.11.053. Epub 2007 Dec 5.
8
Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse.
J Neurophysiol. 2007 Sep;98(3):1549-65. doi: 10.1152/jn.00590.2007. Epub 2007 Jul 11.
9
Enhancement of vision by monocular deprivation in adult mice.
J Neurosci. 2006 Nov 8;26(45):11554-61. doi: 10.1523/JNEUROSCI.3396-06.2006.
10
Motor deficits in homozygous and heterozygous p/q-type calcium channel mutants.
J Neurophysiol. 2007 Feb;97(2):1280-7. doi: 10.1152/jn.00322.2006. Epub 2006 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验