Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
Photosynth Res. 2011 Sep;109(1-3):73-84. doi: 10.1007/s11120-010-9611-3. Epub 2010 Dec 29.
In view of the current increase in atmospheric pCO(2) and concomitant changes in the marine environment, it is crucial to assess, understand, and predict future responses of ecologically relevant phytoplankton species. The diazotrophic cyanobacterium Trichodesmium erythraeum was found to respond strongly to elevated pCO(2) by increasing growth, production rates, and N(2) fixation. The magnitude of these CO(2) effects exceeds those previously seen in other phytoplankton, raising the question about the underlying mechanisms. Here, we review recent publications on metabolic pathways of Trichodesmium from a gene transcription level to the protein activities and energy fluxes. Diurnal patterns of nitrogenase activity change markedly with CO(2) availability, causing higher diel N(2) fixation rates under elevated pCO(2). The observed responses to elevated pCO(2) could not be attributed to enhanced energy generation via gross photosynthesis, although there are indications for CO(2)-dependent changes in ATP/NADPH + H(+) production. The CO(2) concentrating mechanism (CCM) in Trichodesmium is primarily based on HCO(3)(-) uptake. Although only little CO(2) uptake was detected, the NDH complex seems to play a crucial role in internal cycling of inorganic carbon, especially under elevated pCO(2). Affinities for inorganic carbon change over the day, closely following the pattern in N(2) fixation, and generally decrease with increasing pCO(2). This down-regulation of CCM activity and the simultaneously enhanced N(2) fixation point to a shift in energy allocation from carbon acquisition to N(2) fixation under elevated pCO(2) levels. A strong light modulation of CO(2) effects further corroborates the role of energy fluxes as a key to understand the responses of Trichodesmium.
鉴于大气中 pCO2 的增加以及海洋环境的相应变化,评估、理解和预测生态相关浮游植物物种的未来反应至关重要。固氮蓝藻束毛藻被发现对升高的 pCO2 强烈响应,表现为生长、生产力和 N2 固定率的增加。这些 CO2 效应的幅度超过了以前在其他浮游植物中看到的,这引发了关于潜在机制的问题。在这里,我们从基因转录水平到蛋白质活性和能量通量的角度综述了最近关于束毛藻代谢途径的出版物。固氮酶活性的昼夜变化模式随 CO2 可用性而显著变化,导致在升高的 pCO2 下更高的昼夜 N2 固定率。对升高的 pCO2 的观察到的响应不能归因于通过总光合作用增强的能量产生,尽管有迹象表明 ATP/NADPH + H+的产生存在 CO2 依赖性变化。束毛藻的 CO2 浓缩机制(CCM)主要基于 HCO3-摄取。尽管只检测到很少的 CO2 摄取,但 NDH 复合物似乎在无机碳的内部循环中发挥关键作用,特别是在升高的 pCO2 下。对无机碳的亲和力随时间变化,与 N2 固定的模式密切相关,并且通常随 pCO2 的增加而降低。CCM 活性的下调和同时增强的 N2 固定表明,在升高的 pCO2 水平下,能量分配从碳获取转移到 N2 固定。CO2 效应的强烈光调制进一步证实了能量通量作为理解束毛藻反应的关键作用。