Suppr超能文献

海鞘中光合作用速率对无机碳和 pH 的依赖性。

Inorganic carbon and pH dependency of photosynthetic rates in Trichodesmium.

机构信息

School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK.

Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, USA.

出版信息

J Exp Bot. 2018 Jun 27;69(15):3651-3660. doi: 10.1093/jxb/ery141.

Abstract

Increasing atmospheric CO2 concentrations are leading to increases in dissolved CO2 and HCO3- concentrations and decreases in pH and CO32- in the world's oceans. There remain many uncertainties as to the magnitude of biological responses of key organisms to these chemical changes. In this study, we established the relationship between photosynthetic carbon fixation rates and pH, CO2, and HCO3- concentrations in the diazotroph, Trichodesmium erythraeum IMS101. Inorganic 14C-assimilation was measured in TRIS-buffered artificial seawater medium where the absolute and relative concentrations of CO2, pH, and HCO3- were manipulated. First, we varied the total dissolved inorganic carbon concentration (TIC) (<0 to 5 mM) at constant pH, so that ratios of CO2 and HCO3- remained relatively constant. Second, we varied pH (8.54 to 7.52) at constant TIC, so that CO2 increased whilst HCO3- declined. We found that 14C-assimilation could be described by the same function of CO2 for both approaches, but it showed different dependencies on HCO3- when pH was varied at constant TIC than when TIC was varied at constant pH. A numerical model of the carbon-concentrating mechanism (CCM) of Trichodesmium showed that carboxylation rates are modulated by HCO3- and pH. The decrease in assimilation of inorganic carbon (Ci) at low CO2, when TIC was varied, was due to HCO3- uptake limitation of the carboxylation rate. Conversely, when pH was varied, Ci assimilation declined due to a high-pH mediated increase in HCO3- and CO2 leakage rates, potentially coupled to other processes (uncharacterised within the CCM model) that restrict Ci assimilation rates under high-pH conditions.

摘要

大气中二氧化碳浓度的增加导致世界海洋中溶解二氧化碳和 HCO3-浓度的增加,pH 值和 CO32-浓度的降低。关键生物对这些化学变化的生物响应幅度仍存在许多不确定性。在这项研究中,我们建立了固氮生物 Trichodesmium erythraeum IMS101 的光合作用碳固定率与 pH 值、CO2 和 HCO3-浓度之间的关系。在 TRIS 缓冲人工海水中测量了无机 14C 同化,其中 CO2、pH 值和 HCO3-的绝对和相对浓度被操纵。首先,我们在恒定 pH 值下改变总溶解无机碳浓度(TIC)(<0 至5 mM),从而使 CO2 和 HCO3-的比例保持相对恒定。其次,我们在恒定 TIC 下改变 pH 值(8.54 至 7.52),从而使 CO2 增加而 HCO3-减少。我们发现,14C 同化可以用相同的 CO2 函数来描述这两种方法,但当 TIC 恒定时 pH 值变化时,它对 HCO3-的依赖性与 TIC 恒定时 pH 值变化时不同。 Trichodesmium 的碳浓缩机制(CCM)的数值模型表明,羧化速率受 HCO3-和 pH 值的调节。当 TIC 变化时,无机碳(Ci)的同化率降低是由于羧化速率的 HCO3-摄取限制。相反,当 pH 值变化时,由于高 pH 值介导的 HCO3-和 CO2 泄漏率增加,Ci 同化率下降,这可能与其他过程(CCM 模型中未表征)有关,这些过程限制了高 pH 值条件下的 Ci 同化率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5f2/6022602/01997581fdd8/ery14101.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验