School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK.
Department of Chemical Engineering, Imperial College London, South Kensington, London, UK.
J Exp Bot. 2019 Jan 7;70(2):589-597. doi: 10.1093/jxb/ery368.
As atmospheric CO2 concentrations increase, so too does the dissolved CO2 and HCO3- concentrations in the world's oceans. There are still many uncertainties regarding the biological response of key groups of organisms to these changing conditions, which is crucial for predicting future species distributions, primary productivity rates, and biogeochemical cycling. In this study, we established the relationship between gross photosynthetic O2 evolution and light-dependent O2 consumption in Trichodesmium erythraeum IMS101 acclimated to three targeted pCO2 concentrations (180 µmol mol-1=low-CO2, 380 µmol mol-1=mid-CO2, and 720 µmol mol-1=high-CO2). We found that biomass- (carbon) specific, light-saturated maximum net O2 evolution rates (PnC,max) and acclimated growth rates increased from low- to mid-CO2, but did not differ significantly between mid- and high-CO2. Dark respiration rates were five times higher than required to maintain cellular metabolism, suggesting that respiration provides a substantial proportion of the ATP and reductant for N2 fixation. Oxygen uptake increased linearly with gross O2 evolution across light intensities ranging from darkness to 1100 µmol photons m-2 s-1. The slope of this relationship decreased with increasing CO2, which we attribute to the increased energetic cost of operating the carbon-concentrating mechanism at lower CO2 concentrations. Our results indicate that net photosynthesis and growth of T. erythraeum IMS101 would have been severely CO2 limited at the last glacial maximum, but that the direct effect of future increases of CO2 may only cause marginal increases in growth.
随着大气中二氧化碳浓度的增加,世界海洋中的溶解二氧化碳和碳酸氢根浓度也随之增加。对于关键生物群体对这些变化条件的生物响应,仍存在许多不确定性,这对于预测未来物种分布、初级生产力速率和生物地球化学循环至关重要。在这项研究中,我们建立了适应三种目标 pCO2 浓度(180 µmol mol-1=低 CO2、380 µmol mol-1=中 CO2 和 720 µmol mol-1=高 CO2)的 Trichodesmium erythraeum IMS101 总光合作用 O2 释放和依赖光的 O2 消耗之间的关系。我们发现,生物量(碳)特异性、光饱和最大净 O2 释放率(PnC,max)和适应生长率从低 CO2 到中 CO2 增加,但中 CO2 和高 CO2 之间没有显著差异。暗呼吸速率是维持细胞代谢所需的五倍,表明呼吸为固氮提供了大量的 ATP 和还原剂。在从黑暗到 1100 µmol 光子 m-2 s-1 的光强度范围内,O2 摄取与总 O2 释放呈线性增加。这种关系的斜率随着 CO2 的增加而减小,我们将其归因于在较低 CO2 浓度下运行碳浓缩机制的能量成本增加。我们的结果表明,在末次冰期最大值时,T. erythraeum IMS101 的净光合作用和生长将受到严重的 CO2 限制,但未来 CO2 增加的直接影响可能只会导致生长略有增加。