Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany.
Cardiovasc Res. 2011 Apr 1;90(1):38-48. doi: 10.1093/cvr/cvq390. Epub 2010 Dec 30.
Sick sinus syndrome is a generalized abnormality of cardiac impulse formation and is responsible for a large proportion of pacemaker implantations. Although the exact aetiology is not known, it is widely accepted that age-dependent degenerative fibrosis of nodal tissue is the most common cause. Despite its importance, an animal model for sick sinus syndrome is lacking. We attempted to generate a mouse model phenocopying the pathohistological changes as well as the characteristic arrhythmic manifestations of this syndrome.
We crossed two genetically engineered mouse lines, ROSA-eGFP-DTA and HCN4-KiT-Cre, to achieve an inducible deletion of cells specifically in the cardiac pacemaking and conduction system. This deletion resulted in a degenerative fibrosis of nodal tissue, which accurately reflects the pathohistological findings in human sick sinus syndrome. The extent of the sino-atrial fibrosis could be controlled by varying the dosage of the inducing substance, tamoxifen. A high-dose protocol resulted in the complete ablation of all sino-atrial cells as demonstrated by histochemical analysis and quantitative reverse transcriptase-polymerase chain reaction. The animals developed a variety of arrhythmias, including progressive bradycardia, sinus pauses, supraventricular and ventricular tachycardia and chronotropic incompetence. Remarkably, the complete destruction of the primary pacemaker centre resulted in only a small increase in mortality.
This study describes the generation and analysis of an inducible mouse model which closely reflects the pathophysiological characteristics of sick sinus syndrome. The model, with the ability to control the extent of nodal cell ablation and fibrosis, offers new insights into sick sinus syndrome and other cardiac conduction diseases.
病态窦房结综合征是一种心脏冲动形成的普遍异常,是很大一部分起搏器植入的原因。尽管确切的病因尚不清楚,但广泛认为与年龄相关的结组织退行性纤维化是最常见的原因。尽管它很重要,但病态窦房结综合征缺乏动物模型。我们试图建立一种模拟该综合征的病理变化以及特征性心律失常表现的小鼠模型。
我们将两个基因工程小鼠系,ROSA-eGFP-DTA 和 HCN4-KiT-Cre 进行杂交,以实现对心脏起搏和传导系统中特定细胞的诱导性缺失。这种缺失导致结组织的退行性纤维化,准确反映了人类病态窦房结综合征的病理发现。通过改变诱导物质他莫昔芬的剂量,可以控制窦房结纤维化的程度。高剂量方案导致窦房结细胞的完全消融,这可通过组织化学分析和定量逆转录聚合酶链反应证实。这些动物表现出多种心律失常,包括进行性心动过缓、窦性停搏、室上性和室性心动过速以及变时功能不全。值得注意的是,主要起搏中心的完全破坏仅导致死亡率略有增加。
本研究描述了一种可诱导的小鼠模型的生成和分析,该模型紧密反映了病态窦房结综合征的病理生理特征。该模型具有控制结细胞消融和纤维化程度的能力,为病态窦房结综合征和其他心脏传导疾病提供了新的见解。