Suppr超能文献

DeepMiceTL:一种基于深度迁移学习的利用早期心电图预测小鼠心脏传导疾病的方法。

DeepMiceTL: a deep transfer learning based prediction of mice cardiac conduction diseases using early electrocardiograms.

机构信息

Department of Industrial, Manufacturing & Systems Engineering, Texas Tech University, Lubbock, Texas, USA.

Department of Industrial Engineering, University of Houston, Houston, Texas, USA.

出版信息

Brief Bioinform. 2023 May 19;24(3). doi: 10.1093/bib/bbad109.

Abstract

Cardiac conduction disease is a major cause of morbidity and mortality worldwide. There is considerable clinical significance and an emerging need of early detection of these diseases for preventive treatment success before more severe arrhythmias occur. However, developing such early screening tools is challenging due to the lack of early electrocardiograms (ECGs) before symptoms occur in patients. Mouse models are widely used in cardiac arrhythmia research. The goal of this paper is to develop deep learning models to predict cardiac conduction diseases in mice using their early ECGs. We hypothesize that mutant mice present subtle abnormalities in their early ECGs before severe arrhythmias present. These subtle patterns can be detected by deep learning though they are hard to be identified by human eyes. We propose a deep transfer learning model, DeepMiceTL, which leverages knowledge from human ECGs to learn mouse ECG patterns. We further apply the Bayesian optimization and $k$-fold cross validation methods to tune the hyperparameters of the DeepMiceTL. Our results show that DeepMiceTL achieves a promising performance (F1-score: 83.8%, accuracy: 84.8%) in predicting the occurrence of cardiac conduction diseases using early mouse ECGs. This study is among the first efforts that use state-of-the-art deep transfer learning to identify ECG patterns during the early course of cardiac conduction disease in mice. Our approach not only could help in cardiac conduction disease research in mice, but also suggest a feasibility for early clinical diagnosis of human cardiac conduction diseases and other types of cardiac arrythmias using deep transfer learning in the future.

摘要

心脏传导疾病是全球发病率和死亡率的主要原因。由于患者在出现症状之前缺乏早期心电图 (ECG),因此早期发现这些疾病对于预防性治疗成功具有重要的临床意义和新兴需求。然而,由于缺乏早期心电图,开发此类早期筛查工具具有挑战性。 小鼠模型广泛用于心律失常研究。本文的目的是开发深度学习模型,使用其早期心电图来预测小鼠的心脏传导疾病。我们假设突变小鼠在出现严重心律失常之前,其早期心电图会出现微妙异常。这些细微的模式可以通过深度学习来检测,尽管它们很难被人眼识别。我们提出了一种深度迁移学习模型 DeepMiceTL,它利用人类心电图的知识来学习小鼠心电图模式。我们进一步应用贝叶斯优化和 k 折交叉验证方法来调整 DeepMiceTL 的超参数。我们的结果表明,DeepMiceTL 在使用早期小鼠心电图预测心脏传导疾病发生方面表现出有前途的性能(F1 得分:83.8%,准确性:84.8%)。这项研究是首次使用最先进的深度迁移学习来识别小鼠心脏传导疾病早期过程中心电图模式的努力之一。我们的方法不仅可以帮助研究小鼠的心脏传导疾病,而且还为未来使用深度迁移学习在临床上早期诊断人类心脏传导疾病和其他类型的心律失常提供了可行性。

相似文献

9
Cardiac arrhythmia detection using deep learning: A review.基于深度学习的心律失常检测:综述
J Electrocardiol. 2019 Nov-Dec;57S:S70-S74. doi: 10.1016/j.jelectrocard.2019.08.004. Epub 2019 Aug 8.
10
Machine Learning for Real-Time Heart Disease Prediction.机器学习实时心脏病预测。
IEEE J Biomed Health Inform. 2021 Sep;25(9):3627-3637. doi: 10.1109/JBHI.2021.3066347. Epub 2021 Sep 3.

本文引用的文献

1
Hippo-Yap Signaling Maintains Sinoatrial Node Homeostasis.Hippo-Yap 信号通路维持窦房结的稳态。
Circulation. 2022 Nov 29;146(22):1694-1711. doi: 10.1161/CIRCULATIONAHA.121.058777. Epub 2022 Nov 1.
3
Transfer learning for ECG classification.心电图分类的迁移学习。
Sci Rep. 2021 Mar 4;11(1):5251. doi: 10.1038/s41598-021-84374-8.
5
Transcriptional Patterning of the Ventricular Cardiac Conduction System.心室心脏传导系统的转录模式
Circ Res. 2020 Jul 17;127(3):e94-e106. doi: 10.1161/CIRCRESAHA.118.314460. Epub 2020 Apr 15.
7
Diphtheria.白喉。
Nat Rev Dis Primers. 2019 Dec 5;5(1):81. doi: 10.1038/s41572-019-0131-y.
10
Mouse Models of Cardiac Arrhythmias.心脏心律失常的小鼠模型。
Circ Res. 2018 Jul 20;123(3):332-334. doi: 10.1161/CIRCRESAHA.118.313406.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验