Suppr超能文献

基于图谱的脑组织切片半自动分析。

Semi-automated atlas-based analysis of brain histological sections.

机构信息

HHMI/Princeton University, Lewis Thomas Lab, Department of Molecular Biology, Princeton, NJ 08544, United States.

出版信息

J Neurosci Methods. 2011 Mar 15;196(1):12-9. doi: 10.1016/j.jneumeth.2010.12.007. Epub 2010 Dec 29.

Abstract

Quantifying the location and/or number of features in a histological section of the brain currently requires one to first, manually register a corresponding section from a tissue atlas onto the experimental section and second, count the features. No automated method exists for the first process (registering), and most automated methods for the second process (feature counting) operate reliably only in a high signal-to-noise regime. To reduce experimenter bias and inconsistencies and increase the speed of these analyses, we developed Atlas Fitter, a semi-automated, open-source MatLab-based software package that assists in rapidly registering atlas panels onto histological sections. We also developed CellCounter, a novel fully automated cell counting algorithm that is designed to operate on images with non-uniform background intensities and low signal-to-noise ratios.

摘要

目前,要量化大脑组织切片中的特征的位置和/或数量,首先需要将组织图谱中的对应切片手动配准到实验切片上,然后进行特征计数。第一个过程(配准)没有自动化方法,而第二个过程(特征计数)的大多数自动化方法仅在高信噪比下可靠运行。为了减少实验者的偏差和不一致性,并提高这些分析的速度,我们开发了 Atlas Fitter,这是一个基于 MatLab 的半自动化开源软件包,可帮助快速将图谱面板配准到组织切片上。我们还开发了 CellCounter,这是一种新颖的全自动细胞计数算法,旨在处理背景强度不均匀和信噪比低的图像。

相似文献

1
Semi-automated atlas-based analysis of brain histological sections.
J Neurosci Methods. 2011 Mar 15;196(1):12-9. doi: 10.1016/j.jneumeth.2010.12.007. Epub 2010 Dec 29.
2
A multi-atlas based method for automated anatomical rat brain MRI segmentation and extraction of PET activity.
PLoS One. 2014 Oct 17;9(10):e109113. doi: 10.1371/journal.pone.0109113. eCollection 2014.
3
Comparison of two automatic cell-counting solutions for fluorescent microscopic images.
J Microsc. 2015 Oct;260(1):107-16. doi: 10.1111/jmi.12272. Epub 2015 Jun 22.
5
A semi-automated technique for labeling and counting of apoptosing retinal cells.
BMC Bioinformatics. 2014 Jun 5;15:169. doi: 10.1186/1471-2105-15-169.
6
CELLCOUNTER: novel open-source software for counting cell migration and invasion in vitro.
Biomed Res Int. 2014;2014:863564. doi: 10.1155/2014/863564. Epub 2014 Jun 26.
7
Arraycount, an algorithm for automatic cell counting in microwell arrays.
Biotechniques. 2009 Sep;47(3):x-xvi. doi: 10.2144/000113202.
8
An automated mapping method for Nissl-stained mouse brain histologic sections.
J Neurosci Methods. 2018 Oct 1;308:219-227. doi: 10.1016/j.jneumeth.2018.08.005. Epub 2018 Aug 7.
9
Semi-automated quantification and neuroanatomical mapping of heterogeneous cell populations.
J Neurosci Methods. 2018 Jul 15;305:98-104. doi: 10.1016/j.jneumeth.2018.05.008. Epub 2018 May 18.
10
A digital brain atlas and its application to the visceral neuraxis.
J Neurosci Methods. 1994 Oct;54(2):253-60. doi: 10.1016/0165-0270(94)90197-x.

引用本文的文献

1
Bell Jar: A Semiautomated Registration and Cell Counting Tool for Mouse Neurohistology Analysis.
eNeuro. 2025 Feb 5;12(2). doi: 10.1523/ENEURO.0036-23.2025. Print 2025 Feb.
2
Scaling up cell-counting efforts in neuroscience through semi-automated methods.
iScience. 2023 Aug 7;26(9):107562. doi: 10.1016/j.isci.2023.107562. eCollection 2023 Sep 15.
3
A Semi-Automated Workflow for Brain Slice Histology Alignment, Registration, and Cell Quantification (SHARCQ).
eNeuro. 2022 Apr 20;9(2). doi: 10.1523/ENEURO.0483-21.2022. Print 2022 Mar-Apr.
4
Machine learning based analysis of stroke lesions on mouse tissue sections.
J Cereb Blood Flow Metab. 2022 Aug;42(8):1463-1477. doi: 10.1177/0271678X221083387. Epub 2022 Feb 25.
5
Localizing Microemboli within the Rodent Brain through Block-Face Imaging and Atlas Registration.
eNeuro. 2021 Aug 3;8(4). doi: 10.1523/ENEURO.0216-21.2021. Print 2021 Jul-Aug.
6
QUINT: Workflow for Quantification and Spatial Analysis of Features in Histological Images From Rodent Brain.
Front Neuroinform. 2019 Dec 3;13:75. doi: 10.3389/fninf.2019.00075. eCollection 2019.
7
DeNeRD: high-throughput detection of neurons for brain-wide analysis with deep learning.
Sci Rep. 2019 Sep 25;9(1):13828. doi: 10.1038/s41598-019-50137-9.
8
Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements.
Neuron. 2015 Oct 21;88(2):367-77. doi: 10.1016/j.neuron.2015.08.033. Epub 2015 Oct 1.
9
Mapping social behavior-induced brain activation at cellular resolution in the mouse.
Cell Rep. 2015 Jan 13;10(2):292-305. doi: 10.1016/j.celrep.2014.12.014. Epub 2014 Dec 31.
10
Spatial organization of fibroblast nuclear chromocenters: component tree analysis.
J Anat. 2013 Sep;223(3):255-61. doi: 10.1111/joa.12082. Epub 2013 Jul 15.

本文引用的文献

1
A computational approach to edge detection.
IEEE Trans Pattern Anal Mach Intell. 1986 Jun;8(6):679-98.
2
The dusp1 immediate early gene is regulated by natural stimuli predominantly in sensory input neurons.
J Comp Neurol. 2010 Jul 15;518(14):2873-901. doi: 10.1002/cne.22370.
4
Learning-based segmentation framework for tissue images containing gene expression data.
IEEE Trans Med Imaging. 2007 May;26(5):728-44. doi: 10.1109/TMI.2007.895462.
5
3D volume reconstruction of a mouse brain from histological sections using warp filtering.
J Neurosci Methods. 2006 Sep 30;156(1-2):84-100. doi: 10.1016/j.jneumeth.2006.02.020. Epub 2006 Apr 3.
6
Mapping behaviorally relevant neural circuits with immediate-early gene expression.
Curr Opin Neurobiol. 2005 Oct;15(5):599-606. doi: 10.1016/j.conb.2005.08.018.
7
8
Elastic 3-D alignment of rat brain histological images.
IEEE Trans Med Imaging. 2003 Nov;22(11):1480-9. doi: 10.1109/TMI.2003.819280.
9
Experience-dependent regulation of the immediate-early gene arc differs across brain regions.
J Neurosci. 2003 Jul 23;23(16):6443-51. doi: 10.1523/JNEUROSCI.23-16-06443.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验