Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e INQUIMAE/CONICET, Buenos Aires, Argentina.
Insect Biochem Mol Biol. 2011 Apr;41(4):228-35. doi: 10.1016/j.ibmb.2010.12.008. Epub 2010 Dec 31.
Juvenile hormones (JHs) play key roles in regulating metamorphosis and reproduction in insects. The last two steps of JH synthesis diverge depending on the insect order. In Lepidoptera, epoxidation by a P450 monooxygenase precedes esterification by a juvenile hormone acid methyltransferase (JHAMT). In Orthoptera, Dictyoptera, Coleoptera and Diptera epoxidation follows methylation. The aim of our study was to gain insight into the structural basis of JHAMT's substrate recognition as a means to understand the divergence of these pathways. Homology modeling was used to build the structure of Aedes aegypti JHAMT. The substrate binding site was identified, as well as the residues that interact with the methyl donor (S-adenosylmethionine) and the carboxylic acid of the substrate methyl acceptors, farnesoic acid (FA) and juvenile hormone acid (JHA). To gain further insight we generated the structures of Anopheles gambiae, Bombyx mori, Drosophila melanogaster and Tribolium castaneum JHAMTs. The modeling results were compared with previous experimental studies using recombinant proteins, whole insects, corpora allata or tissue extracts. The computational study helps explain the selectivity toward the (10R)-JHA isomer and the reduced activity for palmitic and lauric acids. The analysis of our results supports the hypothesis that all insect JHAMTs are able to recognize both FA and JHA as substrates. Therefore, the order of the methylation/epoxidation reactions may be primarily imposed by the epoxidase's substrate specificity. In Lepidoptera, epoxidase might have higher affinity than JHAMT for FA, so epoxidation precedes methylation, while in most other insects there is no epoxidation of FA, but esterification of FA to form MF, followed by epoxidation to JH III.
保幼激素 (JH) 在昆虫的变态和生殖中发挥关键作用。JH 合成的最后两步因昆虫目而异而有所不同。在鳞翅目昆虫中,P450 单加氧酶的环氧化作用先于 JH 酸甲基转移酶 (JHAMT) 的酯化作用。在直翅目昆虫、等翅目昆虫、鞘翅目昆虫和双翅目昆虫中,环氧化作用发生在甲基化之后。我们的研究目的是深入了解 JHAMT 底物识别的结构基础,以了解这些途径的分歧。同源建模用于构建埃及伊蚊 JHAMT 的结构。鉴定了底物结合位点以及与甲基供体(S-腺苷甲硫氨酸)和底物甲基受体法呢酸 (FA) 和 JH 酸 (JHA) 的羧酸相互作用的残基。为了进一步深入了解,我们生成了冈比亚按蚊、家蚕、黑腹果蝇和赤拟谷盗 JHAMT 的结构。将建模结果与使用重组蛋白、全昆虫、脑垂体或组织提取物进行的先前实验研究进行了比较。计算研究有助于解释对 (10R)-JHA 异构体的选择性以及对棕榈酸和月桂酸的活性降低。我们的结果分析支持了以下假设,即所有昆虫的 JHAMT 都能够识别 FA 和 JHA 作为底物。因此,甲基化/环氧化反应的顺序可能主要由环氧化酶的底物特异性决定。在鳞翅目昆虫中,环氧化酶可能比 JHAMT 对 FA 具有更高的亲和力,因此环氧化作用先于甲基化作用,而在大多数其他昆虫中,FA 没有环氧化作用,而是 FA 酯化形成 MF,然后进行环氧化形成 JH III。