Suppr超能文献

基于扩散光学断层成像的时间相关光子散射的实验测量。

Experimental measurement of time-dependent photon scatter for diffuse optical tomography.

机构信息

Northeastern University, Department of Electrical and Computer Engineering, Dana Research Center, Boston, MA, USA.

出版信息

J Biomed Opt. 2010 Nov-Dec;15(6):065006. doi: 10.1117/1.3523371.

Abstract

Time-resolved measurement of early arriving photons through diffusive media has been shown to effectively reduce the high degree of light scatter in biological tissue. However, the experimentally achievable reduction in photon scatter and the impact of time-gated detection on instrument noise performance is not well understood. We measure time-dependent photon density sensitivity functions (PDSFs) between a pulsed laser source and a photomultiplier tube operating in time-correlated single-photon-counting mode. Our data show that with our system, measurement of early arriving photons reduces the full width half maximum of PDSFs on average by about 40 to 60% versus quasicontinuous wave photons over a range of experimental conditions similar to those encountered in small animal tomography, corresponding to a 64 to 84% reduction in PDSF volume. Factoring in noise considerations, the optimal operating point of our instrument is determined to be about the 10% point on the rising edge of the transmitted intensity curve. Time-dependent Monte Carlo simulations and the time-resolved diffusion approximation are used to model photon propagation and are evaluated for agreement with experimental data.

摘要

已经证明,通过扩散介质进行的早期到达光子的时间分辨测量可以有效地降低生物组织中高度的光散射。然而,实验上可实现的光子散射减少程度以及时间门控检测对仪器噪声性能的影响尚不清楚。我们在脉冲激光源和光电倍增管之间测量时间相关的单光子计数模式下的时间相关光子密度灵敏度函数 (PDSF)。我们的数据表明,在我们的系统中,与准连续波光子相比,测量早期到达光子可将 PDSF 的半峰全宽平均降低约 40%至 60%,在类似于小动物层析成像中遇到的实验条件范围内,PDSF 体积减少 64%至 84%。考虑到噪声因素,我们仪器的最佳工作点确定为传输强度曲线上升沿上的 10%点左右。时间相关的蒙特卡罗模拟和时间分辨扩散近似用于模拟光子传播,并与实验数据进行评估以达成一致。

相似文献

1
Experimental measurement of time-dependent photon scatter for diffuse optical tomography.
J Biomed Opt. 2010 Nov-Dec;15(6):065006. doi: 10.1117/1.3523371.
2
The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography.
Phys Med Biol. 2013 Jan 21;58(2):335-49. doi: 10.1088/0031-9155/58/2/335. Epub 2012 Dec 21.
3
Inversion with early photons.
Med Phys. 2007 Apr;34(4):1405-11. doi: 10.1118/1.2437103.
6
Photon diffusion coefficient in scattering and absorbing media.
J Opt Soc Am A Opt Image Sci Vis. 2006 May;23(5):1106-10. doi: 10.1364/josaa.23.001106.
7
A fast SPAD-based small animal imager for early-photon diffuse optical tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2833-6. doi: 10.1109/EMBC.2014.6944213.
8
Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry.
Appl Opt. 2007 Apr 1;46(10):1597-603. doi: 10.1364/ao.46.001597.
10
Flux vector formulation for photon propagation in the biological tissue.
Opt Lett. 2007 Oct 1;32(19):2837-9. doi: 10.1364/ol.32.002837.

引用本文的文献

1
Design of a portable imager for near-infrared visualization of cutaneous wounds.
J Biomed Opt. 2017 Jan 1;22(1):16010. doi: 10.1117/1.JBO.22.1.016010.
2
Mesh Optimization for Monte Carlo-Based Optical Tomography.
Photonics. 2015 Jun;2(2):375-391. doi: 10.3390/photonics2020375. Epub 2015 Apr 9.
3
Fast single photon avalanche photodiode-based time-resolved diffuse optical tomography scanner.
Biomed Opt Express. 2015 Aug 26;6(9):3596-609. doi: 10.1364/BOE.6.003596. eCollection 2015 Sep 1.
4
An extended analytical approach for diffuse optical imaging.
Phys Med Biol. 2015 Jul 7;60(13):5103-21. doi: 10.1088/0031-9155/60/13/5103. Epub 2015 Jun 17.
5
The effect of temporal impulse response on experimental reduction of photon scatter in time-resolved diffuse optical tomography.
Phys Med Biol. 2013 Jan 21;58(2):335-49. doi: 10.1088/0031-9155/58/2/335. Epub 2012 Dec 21.
6
Quantitative tomographic imaging of intermolecular FRET in small animals.
Biomed Opt Express. 2012 Dec 1;3(12):3161-75. doi: 10.1364/BOE.3.003161. Epub 2012 Nov 8.
7
Ex vivo fluorescence molecular tomography of the spine.
Int J Biomed Imaging. 2012;2012:942326. doi: 10.1155/2012/942326. Epub 2012 Nov 8.
8
Tomographic sensing and localization of fluorescently labeled circulating cells in mice in vivo.
Phys Med Biol. 2012 Jul 21;57(14):4627-41. doi: 10.1088/0031-9155/57/14/4627. Epub 2012 Jul 2.

本文引用的文献

1
The forward and inverse problem in tissue optics based on the radiative transfer equation: a brief review.
J Quant Spectrosc Radiat Transf. 2010 Jul 1;111(11):1852-1853. doi: 10.1016/j.jqsrt.2010.01.020.
2
Time resolved propagation of ultrashort laser pulses within turbid tissues.
Appl Opt. 1989 Jun 15;28(12):2223-9. doi: 10.1364/AO.28.002223.
4
Diffuse optical imaging.
Philos Trans A Math Phys Eng Sci. 2009 Aug 13;367(1900):3055-72. doi: 10.1098/rsta.2009.0080.
5
Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations.
J Opt Soc Am A Opt Image Sci Vis. 2009 Jun;26(6):1444-57. doi: 10.1364/josaa.26.001444.
7
Temporal propagation of spatial information in turbid media.
Opt Lett. 2008 Dec 1;33(23):2836-8. doi: 10.1364/ol.33.002836.
8
Tutorial on diffuse light transport.
J Biomed Opt. 2008 Jul-Aug;13(4):041302. doi: 10.1117/1.2967535.
9
Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo.
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19126-31. doi: 10.1073/pnas.0804798105. Epub 2008 Nov 17.
10
A time domain fluorescence tomography system for small animal imaging.
IEEE Trans Med Imaging. 2008 Aug;27(8):1152-63. doi: 10.1109/TMI.2008.918341.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验