Suppr超能文献

志贺毒素各亚型的毒性存在显著差异。

Shiga toxin subtypes display dramatic differences in potency.

机构信息

Molecular Genetics, Biochemistry, and Microbiology, Room 3109, 231 Albert Sabin Way, ML 524, University of Cincinnati, Cincinnati, OH 45267-0524, USA.

出版信息

Infect Immun. 2011 Mar;79(3):1329-37. doi: 10.1128/IAI.01182-10. Epub 2011 Jan 3.

Abstract

Purified Shiga toxin (Stx) alone is capable of producing systemic complications, including hemolytic-uremic syndrome (HUS), in animal models of disease. Stx includes two major antigenic forms (Stx1 and Stx2), with minor variants of Stx2 (Stx2a to -h). Stx2a is more potent than Stx1. Epidemiologic studies suggest that Stx2 subtypes also differ in potency, but these differences have not been well documented for purified toxin. The relative potencies of five purified Stx2 subtypes, Stx2a, Stx2b, Stx2c, Stx2d, and activated (elastase-cleaved) Stx2d, were studied in vitro by examining protein synthesis inhibition using Vero monkey kidney cells and inhibition of metabolic activity (reduction of resazurin to fluorescent resorufin) using primary human renal proximal tubule epithelial cells (RPTECs). In both RPTECs and Vero cells, Stx2a, Stx2d, and elastase-cleaved Stx2d were at least 25 times more potent than Stx2b and Stx2c. In vivo potency in mice was also assessed. Stx2b and Stx2c had potencies similar to that of Stx1, while Stx2a, Stx2d, and elastase-cleaved Stx2d were 40 to 400 times more potent than Stx1.

摘要

纯化的志贺毒素(Stx)本身就能够在疾病动物模型中产生全身性并发症,包括溶血性尿毒综合征(HUS)。Stx 包括两种主要的抗原形式(Stx1 和 Stx2),Stx2 还有一些较小的变体(Stx2a 到 -h)。Stx2a 比 Stx1 更有效。流行病学研究表明,Stx2 亚型在效力上也存在差异,但这些差异在纯化毒素方面尚未得到很好的记录。通过使用 Vero 猴肾细胞检测蛋白合成抑制和使用原代人肾近端小管上皮细胞(RPTEC)检测代谢活性抑制(将 resazurin 还原为荧光 resorufin),研究了五种纯化的 Stx2 亚型(Stx2a、Stx2b、Stx2c、Stx2d 和激活(弹性蛋白酶切割)Stx2d)的相对效力。在 RPTEC 和 Vero 细胞中,Stx2a、Stx2d 和弹性蛋白酶切割的 Stx2d 的效力至少比 Stx2b 和 Stx2c 高 25 倍。还在小鼠体内评估了效力。Stx2b 和 Stx2c 的效力与 Stx1 相似,而 Stx2a、Stx2d 和弹性蛋白酶切割的 Stx2d 的效力比 Stx1 高 40 至 400 倍。

相似文献

1
Shiga toxin subtypes display dramatic differences in potency.
Infect Immun. 2011 Mar;79(3):1329-37. doi: 10.1128/IAI.01182-10. Epub 2011 Jan 3.
4
Shiga Toxin Subtypes of Non-O157 Serogroups Isolated from Cattle Feces.
Front Cell Infect Microbiol. 2017 Apr 11;7:121. doi: 10.3389/fcimb.2017.00121. eCollection 2017.
5
Binding of Pk-trisaccharide analogs of globotriaosylceramide to Shiga toxin variants.
Infect Immun. 2013 Aug;81(8):2753-60. doi: 10.1128/IAI.00274-13. Epub 2013 May 20.
6
Bimodal Response to Shiga Toxin 2 Subtypes Results from Relatively Weak Binding to the Target Cell.
Infect Immun. 2019 Nov 18;87(12). doi: 10.1128/IAI.00428-19. Print 2019 Dec.
7
Glycolipid binding preferences of Shiga toxin variants.
PLoS One. 2014 Jul 1;9(7):e101173. doi: 10.1371/journal.pone.0101173. eCollection 2014.

引用本文的文献

1
Shiga Toxin-Producing (STEC) in Developing Countries: A 10-Year Review with Global Perspective.
Microorganisms. 2025 Jun 30;13(7):1529. doi: 10.3390/microorganisms13071529.
3
Excess A-subunits of Shiga toxin 2a are produced in enterohemorrhagic Escherichia coli.
Sci Rep. 2025 May 14;15(1):16712. doi: 10.1038/s41598-025-01342-2.
4
Characterization of Seven Shiga Toxin Phages Induced from Human-Derived Shiga Toxin-Producing .
Microorganisms. 2025 Mar 28;13(4):783. doi: 10.3390/microorganisms13040783.
5
Shiga Toxin: Emerging Producer Strains, Prophylactic Approaches, and Application in Cancer Therapy.
J Cancer Prev. 2024 Dec 30;29(4):120-128. doi: 10.15430/JCP.24.010.
6
The diverse landscape of AB5-type toxins.
Eng Microbiol. 2023 Jun 25;3(4):100104. doi: 10.1016/j.engmic.2023.100104. eCollection 2023 Dec.
7
Antimicrobial Resistance in Diverse Pathotypes from Nigeria.
Antibiotics (Basel). 2024 Sep 26;13(10):922. doi: 10.3390/antibiotics13100922.
9
Fragment Screening to Identify Inhibitors Targeting Ribosome Binding of Shiga Toxin 2.
ACS Infect Dis. 2024 Aug 9;10(8):2814-2825. doi: 10.1021/acsinfecdis.4c00224. Epub 2024 Jun 14.

本文引用的文献

1
Molecular basis of differential B-pentamer stability of Shiga toxins 1 and 2.
PLoS One. 2010 Dec 28;5(12):e15153. doi: 10.1371/journal.pone.0015153.
2
Glycan encapsulated gold nanoparticles selectively inhibit shiga toxins 1 and 2.
Bioconjug Chem. 2010 Aug 18;21(8):1486-93. doi: 10.1021/bc100095w.
3
Role of tumor necrosis factor alpha in disease using a mouse model of Shiga toxin-mediated renal damage.
Infect Immun. 2010 Sep;78(9):3689-99. doi: 10.1128/IAI.00616-10. Epub 2010 Jul 6.
4
Different classes of antibiotics differentially influence shiga toxin production.
Antimicrob Agents Chemother. 2010 Sep;54(9):3790-8. doi: 10.1128/AAC.01783-09. Epub 2010 Jun 28.
7
Verocytotoxin-producing Escherichia coli (VTEC).
Vet Microbiol. 2010 Jan 27;140(3-4):360-70. doi: 10.1016/j.vetmic.2009.04.011. Epub 2009 Apr 10.
8
Shiga toxin 2 targets the murine renal collecting duct epithelium.
Infect Immun. 2009 Mar;77(3):959-69. doi: 10.1128/IAI.00679-08. Epub 2009 Jan 5.
9
10
Identification and characterization of Shiga toxin type 2 variants in Escherichia coli isolates from animals, food, and humans.
Appl Environ Microbiol. 2008 Sep;74(18):5645-52. doi: 10.1128/AEM.00503-08. Epub 2008 Jul 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验