非热介电阻挡放电等离子体诱导大肠杆菌失活涉及氧化 DNA 损伤和膜脂质过氧化。

Nonthermal dielectric-barrier discharge plasma-induced inactivation involves oxidative DNA damage and membrane lipid peroxidation in Escherichia coli.

机构信息

Surgical Infection Program, Department of Surgery, Drexel University College of Medicine, 245 N. 15th Street, Room NCB-7150, Mail 413, DUCOM, Philadelphia, PA 19102, USA.

出版信息

Antimicrob Agents Chemother. 2011 Mar;55(3):1053-62. doi: 10.1128/AAC.01002-10. Epub 2011 Jan 3.

Abstract

Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.

摘要

氧化应激导致膜脂质过氧化,产生不同程度有害的氧化修饰产物的细胞。活性氧(ROS)是这个过程的关键调节剂,并诱导大肠杆菌中的脂质过氧化。非热(冷)等离子体的应用越来越多地用于表面污染物的失活。最近,我们报道了非热等离子体的成功应用,使用浮置电极介质阻挡放电(FE-DBD)技术快速失活正常大气中的细菌污染物(S.G.Joshi 等人,美国 J.Infect.Control38:293-301,2010)。在本报告中,我们证明 FE-DBD 等离子体介导的失活涉及大肠杆菌中的膜脂质过氧化。ROS 如单重态氧和过氧化氢样物质,在等离子体诱导的氧化应激过程中产生,是导致膜脂质过氧化的原因,而 ROS 清除剂,如α-生育酚(维生素 E),能够显著抑制脂质过氧化和氧化 DNA 损伤的程度。这些发现表明,这是 FE-DBD 等离子体介导的细菌失活的主要机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索