Suppr超能文献

一种 LC-IMS-MS 平台,为高通量蛋白质组学研究提供了更高的动态范围。

An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies.

机构信息

Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.

出版信息

J Proteome Res. 2010 Feb 5;9(2):997-1006. doi: 10.1021/pr900888b.

Abstract

A high-throughput approach and platform using 15 min reversed-phase capillary liquid chromatography (RPLC) separations in conjunction with ion mobility spectrometry-mass spectrometry (IMS-MS) measurements was evaluated for the rapid analysis of complex proteomics samples. To test the separation quality of the short LC gradient, a sample was prepared by spiking 20 reference peptides at varying concentrations from 1 ng/mL to 10 microg/mL into a tryptic digest of mouse blood plasma and analyzed with both a LC-Linear Ion Trap Fourier Transform (FT) MS and LC-IMS-TOF MS. The LC-FT MS detected 13 out of the 20 spiked peptides that had concentrations >or=100 ng/mL. In contrast, the drift time selected mass spectra from the LC-IMS-TOF MS analyses yielded identifications for 19 of the 20 peptides with all spiking levels present. The greater dynamic range of the LC-IMS-TOF MS system could be attributed to two factors. First, the LC-IMS-TOF MS system enabled drift time separation of the low concentration spiked peptides from the high concentration mouse peptide matrix components, reducing signal interference and background, and allowing species to be resolved that would otherwise be obscured by other components. Second, the automatic gain control (AGC) in the linear ion trap of the hybrid FT MS instrument limits the number of ions that are accumulated to reduce space charge effects and achieve high measurement accuracy, but in turn limits the achievable dynamic range compared to the IMS-TOF instrument.

摘要

采用 15 分钟反相毛细管液相色谱 (RPLC) 分离与离子淌度谱-质谱 (IMS-MS) 联用的高通量方法和平台,用于快速分析复杂蛋白质组学样品。为了测试短 LC 梯度的分离质量,将 20 种参考肽以 1ng/mL 至 10μg/mL 的不同浓度混入小鼠血等离子体的胰蛋白酶消化物中,并用 LC-线性离子阱傅里叶变换 (FT) MS 和 LC-IMS-TOF MS 进行分析。LC-FT MS 检测到 20 个掺入肽中的 13 个,其浓度 > = 100ng/mL。相比之下,LC-IMS-TOF MS 分析中的漂移时间选择质谱可鉴定所有掺入水平存在的 20 个肽中的 19 个。LC-IMS-TOF MS 系统的更大动态范围可归因于两个因素。首先,LC-IMS-TOF MS 系统能够将低浓度掺入肽与高浓度小鼠肽基质成分进行漂移时间分离,从而减少信号干扰和背景,并允许分离出否则会被其他成分掩盖的物质。其次,混合 FT MS 仪器线性离子阱中的自动增益控制 (AGC) 限制了累积的离子数量,以减少空间电荷效应并实现高测量精度,但与 IMS-TOF 仪器相比,这反过来限制了可实现的动态范围。

相似文献

1
An LC-IMS-MS platform providing increased dynamic range for high-throughput proteomic studies.
J Proteome Res. 2010 Feb 5;9(2):997-1006. doi: 10.1021/pr900888b.
2
Optimum collision energies for proteomics: The impact of ion mobility separation.
J Mass Spectrom. 2023 Sep;58(9):e4957. doi: 10.1002/jms.4957. Epub 2023 Jul 6.
5
Dynamically multiplexed ion mobility time-of-flight mass spectrometry.
Anal Chem. 2008 Aug 1;80(15):5873-83. doi: 10.1021/ac8003665. Epub 2008 Jun 18.
7
Internal calibrants allow high accuracy peptide matching between MALDI imaging MS and LC-MS/MS.
J Proteomics. 2012 Aug 30;75(16):5093-5105. doi: 10.1016/j.jprot.2012.04.054. Epub 2012 May 23.
8
Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
J Pharm Biomed Anal. 2014 Jan;87:176-90. doi: 10.1016/j.jpba.2013.04.037. Epub 2013 May 6.

引用本文的文献

2
Optimized Time-Segmented Acquisition Expands Peptide and Protein Identification in TIMS-TOF Pro Mass Spectrometry.
J Proteome Res. 2025 Feb 7;24(2):526-536. doi: 10.1021/acs.jproteome.4c00690. Epub 2025 Jan 22.
3
Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements.
Trends Mol Med. 2024 Dec;30(12):1137-1151. doi: 10.1016/j.molmed.2024.07.009. Epub 2024 Aug 15.
4
Deciphering ApoE Genotype-Driven Proteomic and Lipidomic Alterations in Alzheimer's Disease Across Distinct Brain Regions.
J Proteome Res. 2024 Aug 2;23(8):2970-2985. doi: 10.1021/acs.jproteome.3c00604. Epub 2024 Jan 18.
5
Chiral derivatization-enabled discrimination and on-tissue detection of proteinogenic amino acids by ion mobility mass spectrometry.
Chem Sci. 2022 Nov 21;13(47):14114-14123. doi: 10.1039/d2sc03604e. eCollection 2022 Dec 7.
6
Proteomics and Schizophrenia: The Evolution of a Great Partnership.
Adv Exp Med Biol. 2022;1400:129-138. doi: 10.1007/978-3-030-97182-3_10.
9
Utilizing Pine Needles to Temporally and Spatially Profile Per- and Polyfluoroalkyl Substances (PFAS).
Environ Sci Technol. 2022 Mar 15;56(6):3441-3451. doi: 10.1021/acs.est.1c06483. Epub 2022 Feb 17.

本文引用的文献

1
High Resolution Separations and Improved Ion Production and Transmission in Metabolomics.
Trends Analyt Chem. 2008 Mar;27(3):205-214. doi: 10.1016/j.trac.2007.11.003.
3
Fully automated four-column capillary LC-MS system for maximizing throughput in proteomic analyses.
Anal Chem. 2008 Jan 1;80(1):294-302. doi: 10.1021/ac701727r. Epub 2007 Nov 29.
5
Ion funnel trap interface for orthogonal time-of-flight mass spectrometry.
Anal Chem. 2007 Oct 15;79(20):7845-52. doi: 10.1021/ac071091m. Epub 2007 Sep 13.
6
Profiling and imaging of tissues by imaging ion mobility-mass spectrometry.
J Mass Spectrom. 2007 Aug;42(8):1099-105. doi: 10.1002/jms.1254.
7
Mapping the human plasma proteome by SCX-LC-IMS-MS.
J Am Soc Mass Spectrom. 2007 Jul;18(7):1249-64. doi: 10.1016/j.jasms.2007.04.012. Epub 2007 Apr 24.
8
Ion mobility spectrometry-mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures.
J Am Soc Mass Spectrom. 2007 Jul;18(7):1176-87. doi: 10.1016/j.jasms.2007.03.031. Epub 2007 Apr 6.
9
Proteomics in neurosciences.
Mass Spectrom Rev. 2007 May-Jun;26(3):432-50. doi: 10.1002/mas.20131.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验