INSERM, U823, Université Joseph Fourier Grenoble, Institut Albert Bonniot, Grenoble, France.
Syst Biol Reprod Med. 2011 Feb;57(1-2):50-3. doi: 10.3109/19396368.2010.498076. Epub 2011 Jan 6.
The molecular basis of post-meiotic male genome reorganization and compaction constitutes one of the last black boxes in modern biology. Although the successive transitions in DNA packaging have been well described, the molecular factors driving these near genome-wide reorganizations remain obscure. We have used a combination of different approaches aiming at the discovery of critical factors capable of directing the post-meiotic male genome reprogramming, which is now shedding new light on the nature of the fundamental mechanisms controlling post-meiotic histone replacement and genome compaction. Here we present a summary of these findings. The identification of the first factor capable of reading a precise combination of histone acetylation marks, BRDT, allowed highlighting a critical role for the genome-wide histone hyperacetylation that occurs before generalized histone replacement. In this context, the recent identification of a group of new histone variants capable of forming novel DNA packaging structures on specific regions during late spermatogenesis, when hyperacetylated histones are massively replaced in spermatids, also revealed the occurrence of a post-meiotic region-specific genome reprogramming. Additionally, the functional characterization of other molecular actors and chaperones in action in post-meiotic cells now allows one to describe the first general traits of the mechanisms underlying the structural transitions taking place during the post-meiotic reorganization and epigenetic reprogramming of the male genome.
减数分裂后雄性基因组重组和浓缩的分子基础构成了现代生物学中最后一个未解之谜。尽管 DNA 包装的连续转变已经得到了很好的描述,但驱动这些近乎全基因组重排的分子因素仍然不清楚。我们使用了一系列不同的方法,旨在发现能够指导减数分裂后雄性基因组重编程的关键因素,这为控制减数分裂后组蛋白替换和基因组浓缩的基本机制的性质提供了新的线索。在这里,我们总结了这些发现。第一个能够读取精确的组蛋白乙酰化标记组合的因子 BRDT 的鉴定,强调了在广泛的组蛋白替换之前发生的全基因组组蛋白超乙酰化的关键作用。在这种情况下,最近鉴定了一组新的组蛋白变体,它们能够在精子发生过程中晚期特定区域形成新的 DNA 包装结构,此时精子细胞中的组蛋白大量被替换,这也揭示了减数分裂后特定区域的基因组重编程的发生。此外,对减数分裂后细胞中作用的其他分子因子和伴侣的功能特征的研究,现在可以描述在减数分裂后雄性基因组重组和表观遗传重编程过程中发生的结构转变的机制的第一个一般特征。