Program in Molecular Biology and Biotechnology, Department of Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, United States of America.
PLoS One. 2010 Dec 30;5(12):e15769. doi: 10.1371/journal.pone.0015769.
Spinal muscular atrophy (SMA) is a leading genetic cause of childhood mortality, caused by reduced levels of survival motor neuron (SMN) protein. SMN functions as part of a large complex in the biogenesis of small nuclear ribonucleoproteins (snRNPs). It is not clear if defects in snRNP biogenesis cause SMA or if loss of some tissue-specific function causes disease. We recently demonstrated that the SMN complex localizes to the Z-discs of skeletal and cardiac muscle sarcomeres, and that SMN is a proteolytic target of calpain. Calpains are implicated in muscle and neurodegenerative disorders, although their relationship to SMA is unclear. Using mass spectrometry, we identified two adjacent calpain cleavage sites in SMN, S192 and F193. Deletion of small motifs in the region surrounding these sites inhibited cleavage. Patient-derived SMA mutations within SMN reduced calpain cleavage. SMN(D44V), reported to impair Gemin2 binding and amino-terminal SMN association, drastically inhibited cleavage, suggesting a role for these interactions in regulating calpain cleavage. Deletion of A188, a residue mutated in SMA type I (A188S), abrogated calpain cleavage, highlighting the importance of this region. Conversely, SMA mutations that interfere with self-oligomerization of SMN, Y272C and SMNΔ7, had no effect on cleavage. Removal of the recently-identified SMN degron (Δ268-294) resulted in increased calpain sensitivity, suggesting that the C-terminus of SMN is important in dictating availability of the cleavage site. Investigation into the spatial determinants of SMN cleavage revealed that endogenous calpains can cleave cytosolic, but not nuclear, SMN. Collectively, the results provide insight into a novel aspect of the post-translation regulation of SMN.
脊髓性肌萎缩症(SMA)是儿童死亡的主要遗传原因,由生存运动神经元(SMN)蛋白水平降低引起。SMN 作为小核核糖核蛋白(snRNP)生物发生的大型复合物的一部分发挥作用。目前尚不清楚 snRNP 生物发生缺陷是否导致 SMA,或者是否丧失某些组织特异性功能导致疾病。我们最近证明,SMN 复合物定位于骨骼肌和心肌肌节的 Z 盘,SMN 是钙蛋白酶的蛋白水解靶标。钙蛋白酶参与肌肉和神经退行性疾病,尽管它们与 SMA 的关系尚不清楚。使用质谱法,我们在 SMN 中鉴定了两个相邻的钙蛋白酶切割位点,S192 和 F193。该区域周围的小基序缺失会抑制切割。该患者来源的 SMA 突变降低了 SMN 的钙蛋白酶切割。报道会损害 Gemin2 结合和氨基末端 SMN 关联的 SMN(D44V),严重抑制切割,表明这些相互作用在调节钙蛋白酶切割中起作用。缺失 A188(I 型 SMA 中的突变 A188S),消除了钙蛋白酶切割,突出了该区域的重要性。相反,干扰 SMN 自身寡聚化的 SMA 突变,Y272C 和 SMNΔ7,对切割没有影响。最近鉴定的 SMN 降解物(Δ268-294)的去除导致钙蛋白酶敏感性增加,表明 SMN 的 C 末端在决定切割位点的可用性方面很重要。对 SMN 切割的空间决定因素的研究表明,内源性钙蛋白酶可以切割细胞质,但不能切割核内 SMN。总之,这些结果为 SMN 的翻译后调控提供了新的认识。