Suppr超能文献

肿瘤细胞侵袭的生物物理调控:超越基质硬度。

Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness.

机构信息

Department of Bioengineering, University of California, Berkeley, CA, USA.

出版信息

Integr Biol (Camb). 2011 Apr;3(4):267-78. doi: 10.1039/c0ib00095g. Epub 2011 Jan 6.

Abstract

Invasion of cancer cells into the extracellular matrix (ECM) is a key step in tumor infiltration and metastasis. While the strong influence of ECM stiffness in governing tumor cell migration has been well established in two-dimensional culture paradigms, investigation of this parameter in three-dimensional (3D) ECMs has proven considerably more challenging, in part because perturbations that change 3D ECM stiffness often concurrently change microscale matrix parameters that critically regulate cell migration, such as pore size, fiber architecture, and local material deformability. Here we review the potential importance of these parameters in the context of tumor cell migration in 3D ECMs. We begin by discussing biophysical mechanisms of cell motility in 3D ECMs, with an emphasis on the cell-matrix mechanical interactions that underlie this process and key signatures of mesenchymal and amoeboid modes of motility. We then consider microscale matrix physical properties that are particularly relevant to 3D culture and would be expected to regulate motility, including matrix microstructure and nonlinear elasticity. We also discuss how changes in 3D matrix properties might be expected to trigger transitions in subcellular mechanisms, which in turn contribute to mesenchymal-amoeboid transition (MAT) by imposing restrictions on 3D motility. We expect that the field will gain valuable insight into invasion and metastasis by deepening its understanding of microscale, biophysical interactions between tumor cells and matrix elements and by creating new 3D scaffolds that permit orthogonal manipulation of specific matrix parameters.

摘要

癌细胞侵入细胞外基质(ECM)是肿瘤浸润和转移的关键步骤。虽然 ECM 硬度对肿瘤细胞迁移的强烈影响在二维培养模式中得到了很好的证实,但在三维(3D)ECM 中研究这一参数具有相当大的挑战性,部分原因是改变 3D ECM 硬度的扰动往往同时改变了关键调节细胞迁移的微尺度基质参数,如孔径、纤维结构和局部材料可变形性。在这里,我们回顾了这些参数在 3D ECM 中肿瘤细胞迁移中的潜在重要性。我们首先讨论了细胞在 3D ECM 中运动的生物物理机制,重点介绍了构成这一过程的细胞与基质的力学相互作用,以及间质和阿米巴样运动模式的关键特征。然后,我们考虑了与 3D 培养特别相关且预计会调节运动的微尺度基质物理特性,包括基质微结构和非线性弹性。我们还讨论了 3D 基质特性的变化如何预计会引发细胞内机制的转变,进而通过对 3D 运动的限制,导致间质-阿米巴样转变(MAT)。我们希望通过加深对肿瘤细胞与基质成分之间微观、生物物理相互作用的理解,并通过创建允许对特定基质参数进行正交操作的新 3D 支架,为侵袭和转移提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验